跳至主要内容

【转】VxWorks编程常用函数说明

时间:2008-8-5    来源:网络   编辑:Admin 浏览次数:2766

这两天在看VxWorks下的socket网络方面的编程,其中涉及到不少VxWorks下的函数使用,在网上搜了半天觉得这个很不错,于是将其copy下来。最后给出了copy的链接。

vxWorks编程指南



一、官方的Program Guide
位于安装目录下:\docs\vxworks\guide\index.html

二、常用的库:
#i nclude "taskLib.h" /* 任务 */
#i nclude "msgQLib.h" /* 消息队列 */
#i nclude "semLib.h" /* 信号量 */
#i nclude "ioLib.h" /* IO */
#i nclude "wdLib.h" /* Watch dog */
#i nclude "logLib.h" /* 信息输出 */
#i nclude "socket.h" /* 网络套接字 */

三、IO系统:ioLib.h
1、系统中的IO设备,包括键盘、串口、文件等,都用统一的接口访问。第一步通常先得到文件描述符,然后进行读写或者设置的工作,最后关闭该描述符。
creat:建立文件
open:得到文件或设备的描述符
read:读文件或设备
write:写文件或设备
ioctl:设置参数
close:关闭文件描述符
remove:删除文件

2、内存文件
memDrv( ) - 初始化伪内存设备
memDevCreate( ) - 建立伪内存设备
memDevCreateDir( ) - 建立一组伪内存设备
memDevDelete( ) - 删除伪内存设备

Init() {
uchar_t buffer[1024];
int fd;
memDrv( );
memDevCreate("/mem/mem1", buffer, sizeof(buffer));
if ((fd = open("/mem/mem1", O_RDWR, 0644)) != ERROR) {
write(fd, &data, sizeof(data));
... ...
close(fd);
}
memDevDelete("/mem/mem1");
}

3、通过Select函数实现多个IO监听:selectLib.h
当等待多个IO时,我们可以使用Select函数,fd为文件描述符:
int select(
int width, /* 最大的fd,或直接FD_SETSIZE (2048) */
fd_set * pReadFds, /* 读的fd集合 */
fd_set * pWriteFds, /* 写的fd集合 */
fd_set * pExceptFds, /* vxWorks不支持,NULL */
struct timeval * pTimeOut /* 等待时间, NULL = forever */
)
还有几个宏:
FD_SET(fd, &fdset) 设置fd的监听位
FD_CLR(fd, &fdset) 清除fd的监听位
FD_ZERO(&fdset) 清除所有监听位
FD_ISSET(fd, &fdset) fd是否有数据
例子,其中MAX意为取最大值:
Init() {
struct fd_set readFds;
int fds[4];
int width;

fds[0] = open(..);... ...;fds[3] = open(..); /* 打开IO */
width = MAX(fds[0], ... ... , fds[3])+1; /* fd的最大值+1 */
/* FOREVER {*/
FD_ZERO(&readFds); /* 设置fd_set结构 */
FD_SET(fds[0], & readFds);... ...; FD_SET(fds[3], & readFds);

if (select(width, &readFds, NULL, NULL, NULL) == ERROR) { /*监听*/
close(fds[0]); ... ...; close(fds[3]);
return;
}
for(i=0; i
if (FD_ISSET(fds[i], &readFds)) {
... ...; /* 进行读写操作 */
}
}
/* } */
}

四、多任务环境的编程:
1、任务控制:taskLib.h
taskSpawn( ) - 创建任务
taskInit( ) -初始化任务,用户自己指定栈和PCB地址
taskActivate( ) - 激活已经初始化的任务
exit( ) - 在任务中结束 (ANSI)
taskDelete( ) - 删除任务
taskDeleteForce( ) - 强制删除,即使被保护
taskSuspend( ) - 挂起任务
taskResume( ) - 恢复挂起的任务
taskRestart( ) - 重新启动任务
taskPrioritySet( ) - 改变任务优先级
taskPriorityGet( ) - 读取任务优先级
taskLock( ) - 禁止任务调度
taskUnlock( ) - 允许任务调度
taskSafe( ) - 保护任务不被删除
taskUnsafe( ) - 解除保护
taskDelay( ) - 延时
taskIdSelf( ) - 得到当前任务的ID
taskIdVerify( ) - 任务ID是否存在
taskTcb( ) - 得到任务控制块(TCB)的地址
taskOptionsSet( ) - 改变任务选项
taskOptionsGet( ) - 得到任务当前选项
taskRegsGet( ) - 得到任务TCB中寄存器的信息
taskRegsSet( ) - 设定任务TCB中寄存器的信息
taskName( ) - 得到任务名称
taskNameToId( ) - 由名称得到ID
taskIdDefault( ) - 设置默认的任务ID
taskIsReady( ) - 任务是否就绪
taskIsSuspended( ) - 任务是否挂起
taskIdListGet( ) - 得到活动的任务列表

2、任务互斥 - 信号量:semLib.h
semGive( ) � 释放一个信号量
semTake( ) � 获取一个信号量,会阻塞
semFlush( ) � 使所有阻塞在本信号量上的任务变为就绪状态
semDelete( ) � 删除一个信号量
1)二进制信号量:semBCreate
可用于任务同步和互斥,但常用于任务同步
2)互斥信号量:semMCreate
专门用于任务互斥的信号量,保护临界资源
3)计数信号量:semCCreate
多实例资源的访问控制

3、任务同步
1)消息队列:msgQLib.h
消息队列
msgQCreate( ) - 创建消息队列
msgQDelete( ) - 删除消息队列
msgQSend( ) - 发送消息
msgQReceive( ) - 接受消息,调用后阻塞
msgQNumMsgs( ) - 得到消息队列中的消息数量

Init() {
/* 创建消息队列 */
if ((msgQID = msgQCreate(8, 1, MSG_Q_FIFO)) == NULL) {
printf("Message queue create failed!\n");
}
}

taskSend() {
if (OK != msgQSend(msgQID, "A", 1, NO_WAIT, MSG_PRI_NORMAL)) {
printf("Message send failed!");
}
}

taskReceive() {
uchar_t ch;
msgQReceive(msgQID, &ch, 1, WAIT_FOREVER); /* 这里任务会阻塞 */
printf("Received from msgq: %c ", ch);
}

2)管道:ioLib.h,系统默认包含了pipe驱动组件
pipeDevCreate( ) - 创建管道
pipeDevDelete( ) - 删除管道
由于管道属于IO,所以可以使用Select监听,消息队列不是IO,不能使用Select

Init() {
/* 创建管道 */
if (pipeDevCreate("/pipe/mypipe", 8, 1) != OK) {
printf("/pipe/mypipe create fialed!\n");
}
/* 创建互斥信号量 */
if ((semMID = semMCreate(SEM_Q_FIFO)) == NULL)
{
printf("Mutex semaphore create failed!\n");
}
}

taskSend() {
int pd; /* pipe的描述符 */
if ((pd = open("/pipe/mypipe", O_WRONLY, 0644)) == ERROR) {
printf("Open pipe failed!");
}
if (semTake(semMID, NO_WAIT) == ERROR) {
printf("Pipe in use!");
}
write(pd, "a", 1);
semGive(semMID);
close(pd);
}

taskReceive() {
int pd; /* pipe的描述符 */
uchar_t ch;
if ((pd = open("/pipe/mypipe", O_RDONLY, 0644)) == ERROR) {
printf("Open pipe failed!");
}
if (read(pd, &ch, 1)>0) { /* 这里任务会阻塞 */
printf("Received from pipe: %c", ch);
}
}

3)二进制信号量
Init() {
/* 创建二进制信号量 */
if ((semBID = semBCreate(SEM_Q_FIFO, SEM_EMPTY)) == NULL) {
printf("Binary semaphore create failed!\n");
}
}

taskSend() {
semGive(semBID);
}

taskReceive() {
semTake(semBID, WAIT_FOREVER); /* 这里任务会阻塞 */
}

4)事件:eventLib
发送事件要指定目标任务的ID
eventReceive( ) - 等待事件
eventSend( ) - 发送事件
eventClear( ) - 清除当前任务的事件.

taskSend() {
if (OK != eventSend(taskReceiveID, 0x00000001)) {
printf("Event send failed!");
}
}

taskReceive() {
UINT32 Ev;
if (OK!=eventReceive(0x00ffffff, EVENTS_WAIT_ANY, WAIT_FOREVER, &Ev)) {
printf("eventReceive Error!\n");
}
else {
Ev &= 0x00000001;
if (Ev) {
printf("Event %d received!", Ev);
}
}
}

五、Watch dog :wdLib.h
系统提供了软看门狗定时器,使用也简便:
wdCreate( ) - 创建看门狗
wdDelete( ) - 删除
wdStart( ) - 启动
wdCancel( ) - 停止

Init() {
/* 创建看门狗 */
if ((wdID = wdCreate()) == NULL) {
printf("Watch dog create failed!\n");
}
}

task() {
if (OK != wdStart(wdID, sysClkRateGet()*5, proc_wd, 0)) {
printf("Watch dog start failed!\n");
}
}

int proc_wd(int param) {
logMsg(... ...);
}

六、网络编程:sockLib.h
使用标准的BSD Socket套接字,使用TCP或者UDP协议进行通讯。
socket( ) - 打开套接字
bind( ) - 与端口、地址等绑定
listen( ) - 监听模式
accept( ) - 允许对方的连接
connect( ) - 主动与远端连接
connectWithTimeout( ) - 超时功能的connect函数
sendto( ) - 发送
send( ) - 发送
sendmsg( ) - 发送
recvfrom( ) - 接收
recv( ) - 接收
recvmsg( ) -接收
setsockopt( ) - 设定套接字参数
getsockopt( ) - 得到套接字参数
getsockname( ) - 得到套接字名称
getpeername( ) -得到连接的对点的名称
shutdown( ) - 关闭连接

七、异常处理
1、错误号:errnoLib.h
32位有符号整数,1~500被系统占用,其他程序内可用。如
#define MEMORY_LEAK 0x20005
errnoGet( ) - 得到当前任务的错误号
errnoOfTaskGet( ) - 得到指定任务的错误号
errnoSet( ) - 设定当前任务的错误号
errnoOfTaskSet( ) - 设定指定任务的错误号

2、信号:sigLib.h
signal( ) - 指定信号的入口函数
raise( ) - 发送信号给当前任务
kill( ) - 发送信号给指定任务

task1() {
signal(30, proc_sig); /* 注册30号的信号 */
/* raise(30); */
}

task2() {
kill(task1ID, 30);
}

void proc_sig(int param) {
logMsg("Error message...");
}

八、中断:iv.h
x86的0x0~0xf号中断对应vxWorks中0x20~0x2f号中断
以9号中断为例:
初始化中断:
intConnect( INUM_TO_IVEC(9+0x20), Int9Handler, 0); /* 绑定中断函数 */
sysIntEnablePIC(9); /* 使能9号中断 */

中断函数原型:
void Int9Handler(int Param); /* 注意中断函数中不要调用阻塞函数 */

评论

此博客中的热门博文

【转】AMBA、AHB、APB总线简介

AMBA 简介 随着深亚微米工艺技术日益成熟,集成电路芯片的规模越来越大。数字IC从基于时序驱动的设计方法,发展到基于IP复用的设计方法,并在SOC设计中得到了广泛应用。在基于IP复用的SoC设计中,片上总线设计是最关键的问题。为此,业界出现了很多片上总线标准。其中,由ARM公司推出的AMBA片上总线受到了广大IP开发商和SoC系统集成者的青睐,已成为一种流行的工业标准片上结构。AMBA规范主要包括了AHB(Advanced High performance Bus)系统总线和APB(Advanced Peripheral Bus)外围总线。   AMBA 片上总线        AMBA 2.0 规范包括四个部分:AHB、ASB、APB和Test Methodology。AHB的相互连接采用了传统的带有主模块和从模块的共享总线,接口与互连功能分离,这对芯片上模块之间的互连具有重要意义。AMBA已不仅是一种总线,更是一种带有接口模块的互连体系。下面将简要介绍比较重要的AHB和APB总线。 基于 AMBA 的片上系统        一个典型的基于AMBA总线的系统框图如图3所示。        大多数挂在总线上的模块(包括处理器)只是单一属性的功能模块:主模块或者从模块。主模块是向从模块发出读写操作的模块,如CPU,DSP等;从模块是接受命令并做出反应的模块,如片上的RAM,AHB/APB 桥等。另外,还有一些模块同时具有两种属性,例如直接存储器存取(DMA)在被编程时是从模块,但在系统读传输数据时必须是主模块。如果总线上存在多个主模块,就需要仲裁器来决定如何控制各种主模块对总线的访问。虽然仲裁规范是AMBA总线规范中的一部分,但具体使用的算法由RTL设计工程师决定,其中两个最常用的算法是固定优先级算法和循环制算法。AHB总线上最多可以有16个主模块和任意多个从模块,如果主模块数目大于16,则需再加一层结构(具体参阅ARM公司推出的Multi-layer AHB规范)。APB 桥既是APB总线上唯一的主模块,也是AHB系统总线上的从模块。其主要功能是锁存来自AHB系统总...

【转】GPIO编程模拟I2C入门

ARM编程:ARM普通GPIO口线模拟I2C  请教个问题: 因为需要很多EEPROM进行点对点控制,所以我现在要用ARM的GPIO模拟I2C,管脚方向我设 置的是向外的。我用网上的RW24C08的万能程序修改了一下,先进行两根线的模拟,SDA6, SCL6,但是读出来的数不对。我做了一个简单的实验,模拟SDA6,SCL6输出方波,在示波 器上看到正确方波,也就是说,我的输出控制是没问题的。 哪位大哥能指点一下,是否在接收时管脚方向要设为向内?(不过IOPIN不管什么方向都可 以读出当前状态值的阿) 附修改的RW24C08()程序: #define  SomeNOP() delay(300); /**/ /* *********************************  RW24C08   **************************************** */ /**/ /* ----------------------------------------------------------------------------- ---  调用方式:void I2CInit(void)   函数说明:私有函数,I2C专用 ------------------------------------------------------------------------------- -- */ void  I2CInit( void ) ... {  IO0CLR  =  SCL6;      // 初始状态关闭总线  SomeNOP();  // 延时   I2CStop();  // 确保初始化,此时数据线是高电平 }   /**/ /* ---------------------------------------------------------------------------- ----  调用方式:void I2CSta...

【转】cs8900网卡的移植至基于linux2.6内核的s3c2410平台

cs8900网卡的移植至基于linux2.6内核的s3c2410平台(转) 2008-03-11 20:58 硬件环境:SBC-2410X开发板(CPU:S3C2410X) 内核版本:2.6.11.1 运行环境:Debian2.6.8 交叉编译环境:gcc-3.3.4-glibc-2.3.3 第一部分 网卡CS8900A驱动程序的移植 一、从网上将Linux内核源代码下载到本机上,并将其解压: #tar jxf linux-2.6.11.1.tar.bz2 二、打开内核顶层目录中的Makefile文件,这个文件中需要修改的内容包括以下两个方面。 (1)指定目标平台。 移植前:         ARCH?= $(SUBARCH) 移植后: ARCH            :=arm (2)指定交叉编译器。 移植前: CROSS_COMPILE ?= 移植后: CROSS_COMPILE   :=/opt/crosstool/arm-s3c2410-linux-gnu/gcc-3.3.4-glibc-2.3.3/bin/arm-s3c2410-linux-gnu- 注:这里假设编译器就放在本机的那个目录下。 三、添加驱动程序源代码,这涉及到以下几个方面。(1)、从网上下载了cs8900.c和cs8900.h两个针对2.6.7的内核的驱动程序源代码,将其放在drivers/net/arm/目录下面。 #cp cs8900.c ./drivers/net/arm/ #cp cs8900.h ./drivers/net/arm/ 并在cs8900_probe()函数中,memset (&priv,0,sizeof (cs8900_t));函数之后添加如下两条语句: __raw_writel(0x2211d110,S3C2410_BWSCON); __raw_writel(0x1f7c,S3C2410_BANKCON3); 注:其原因在"第二部分"解释。 (2)、修改drivers/net/arm/目录下的Kconfig文件,在最后添加如...