跳至主要内容

【转】vivi开发笔记(十八):bootloader开发阶段总结

文章说明:calmarrow(lqm)原创

文章引自:http://piaoxiang.cublog.cn

 
    到今天,vivi源代码基本分析完毕。对bootloader有了更深层的认识。在此期间,仔细阅读了毛德操、胡希明先生编著的《嵌入式系统--采用公开源代码和StrongARM/XScale处理器》第七章:嵌入式系统的引导和装入。看了看出版时间,才明白牛人詹荣开或许也受惠于此书。他在IBM Development上发表的那篇《嵌入式bootloader技术内幕》一文,后来在sourceforge上的开源项目jtager,在此书中有详尽的描述。(当然,他们可能是独立研究的。)两者结合起来看,对自己的帮助非常大。
 
    现在看来,bootloader主要的工作量有三个:一是根据开发板,确定硬件初始化部分;二是内存初始化,不过内存检测技术相对比较成熟了;三是读写存储介质,包括nor/nand flash或者其他。设置内核传递参数相对前面还是比较简单的。如果完成这些基本功能,一个比较简单的实现就是blob;vivi虽然也比较小,但是还是比blob大一些,也复杂一些。有了这个基本的框架,如果公司是为了推销自己的SoC,那么会做Demo板,也就是所谓的"公版",为之开发bootloader,并不打算支持更多的SoC,比如blob,vivi都是这样。他们的功能并不完善,如果后来的维护者想要增强功能,一是在下载手段上下功夫,比如增加tftp下载或者usb下载,二是在支持文件系统方面做工作。另外有机构专门开发并维护bootloader,想要支持尽可能多的SoC,比如uboot,它就可以在软件架构方面更多的考虑可扩展性,可移植性,同时增强上述手段,另外,可以增加monitor功能,在内核尚未移植完成的阶段增加调试手段。
 
    由此形成了对bootloader比较全面的认识。要想继续深入bootloader,那么有下面的工作:
 
    ・提高阅读datasheet,提取有用信息的能力。能够更快的开发出硬件初始化代码。
    ・掌握内存检测算法,能够快速编写。
    ・学习MTD技术,开发存储介质驱动程序。
    ・掌握tag内核参数传递技术。
 
    这些都是具体的细节的工作。在软件架构的学习上,我想还是应该以uboot为主,因为它的可移植性、可扩展性等,都是其他的bootloader不能相比的。要想在基本的简单的bootloader的基础上有所提高,那么就需要深入的去了解学习uboot。在后续的开发中,如果需要自己开发bootloader,那么就以vivi/blob为模型,重新编写;如果仅仅需要移植,而且该SoC并没有自己的bootloader,那么最好还是以uboot最为移植。
 
    bootloader算是比较简单,下点功夫完全掌握并非难事。在bootloader的学习过程中,把相关的基础继续加强巩固。我想,到07年末,这个任务应该可以完成。这次可是充分估计的学习内容的广度和深度了。要想学好,就要学深学透。这部分内容的开发也比较适合自己的知识背景。完成此部分后,再进入内核开发的驱动部分,从外围入手,逐步的深入的学习内核。课题也分配下来了,还需要在应用上做工作。要做的事情很多,但是不要急,慢慢来。还是那句话,这些技术都是非常成熟了,有文档和资料。只要静下心来,就一定能够掌握。所以,学习这些实用技术的同时,还不能忽略专业理论知识的学习。两者结合,才能走得更远。

评论

此博客中的热门博文

【转】VxWorks中的地址映射

在运用嵌入式系统VxWorks和MPC860进行通信系统设计开发时,会遇到一个映射地址不能访问的问题。 缺省情况下,VxWorks系统已经进行了如下地址的映射:   memory地址、bcsr(Board Control and Status)地址、PC_BASE_ADRS(PCMCIA)地址、Internal Memory地址、rom(Flach memory)地址等,但是当你的硬件开发中要加上别的外设时,如(falsh、dsp、FPGA等),对这些外设的访问也是通过地址形式进行读写,如果你没有加相应的地址映射,那么是无法访问这些外设的。   和VxWorks缺省地址映射类似,你也可以进行相应的地址映射。   如下是地址映射原理及实现:   1、 地址映射结构 在Tornado\target\h\vmLib.h文件中 typedef struct phys_mem_desc { void *virtualAddr; void *physicalAddr; UINT len; UINT initialStateMask; /* mask parameter to vmStateSet */ UINT initialState; /* state parameter to vmStateSet */ } PHYS_MEM_DESC; virtualAddr:你要映射的虚拟地址 physicalAddr:硬件设计时定义的实际物理地址 len;要进行映射的地址长度 initialStateMask:可以初始化的地址状态: 有如下状态: #define VM_STATE_MASK_VALID 0x03 #define VM_STATE_MASK_WRITABLE 0x0c #define VM_STATE_MASK_CACHEABLE 0x30 #define VM_STATE_MASK_MEM_COHERENCY 0x40 #define VM_STATE_MASK_GUARDED 0x80 不同的CPU芯片类型还有其特殊状态 initialState:实际初始化的地址状态: 有如下状态: #define VM_STATE_VALID 0x01 #define VM_STATE_VALID_NOT 0x00 #define VM_STATE_WRITA

【转】cs8900网卡的移植至基于linux2.6内核的s3c2410平台

cs8900网卡的移植至基于linux2.6内核的s3c2410平台(转) 2008-03-11 20:58 硬件环境:SBC-2410X开发板(CPU:S3C2410X) 内核版本:2.6.11.1 运行环境:Debian2.6.8 交叉编译环境:gcc-3.3.4-glibc-2.3.3 第一部分 网卡CS8900A驱动程序的移植 一、从网上将Linux内核源代码下载到本机上,并将其解压: #tar jxf linux-2.6.11.1.tar.bz2 二、打开内核顶层目录中的Makefile文件,这个文件中需要修改的内容包括以下两个方面。 (1)指定目标平台。 移植前:         ARCH?= $(SUBARCH) 移植后: ARCH            :=arm (2)指定交叉编译器。 移植前: CROSS_COMPILE ?= 移植后: CROSS_COMPILE   :=/opt/crosstool/arm-s3c2410-linux-gnu/gcc-3.3.4-glibc-2.3.3/bin/arm-s3c2410-linux-gnu- 注:这里假设编译器就放在本机的那个目录下。 三、添加驱动程序源代码,这涉及到以下几个方面。(1)、从网上下载了cs8900.c和cs8900.h两个针对2.6.7的内核的驱动程序源代码,将其放在drivers/net/arm/目录下面。 #cp cs8900.c ./drivers/net/arm/ #cp cs8900.h ./drivers/net/arm/ 并在cs8900_probe()函数中,memset (&priv,0,sizeof (cs8900_t));函数之后添加如下两条语句: __raw_writel(0x2211d110,S3C2410_BWSCON); __raw_writel(0x1f7c,S3C2410_BANKCON3); 注:其原因在"第二部分"解释。 (2)、修改drivers/net/arm/目录下的Kconfig文件,在最后添加如下内容: Config ARM_CS8900    tristate "CS8900 support" depends on NET_ETHERNET && A

【转】多迷人Gtkmm啊

前边已经说过用glade设计界面然后动态装载,接下来再来看看怎么改变程序的皮肤(主题)     首先从 http://art.gnome.org/themes/gtk2 下载喜欢的主题,从压缩包里提取gtk-2.0文件夹让它和我们下边代码生成的可执行文件放在同一个目录下,这里我下载的的 http://art.gnome.org/download/themes/gtk2/1317/GTK2-CillopMidnite.tar.gz     然后用glade设计界面,命名为main.glade,一会让它和我们下边代码生成的可执行程序放在同一个目录下边     然后开始写代码如下: //main.cc #include <gtkmm.h> #include <libglademm/xml.h> int main(int argc, char *argv[]) {     Gtk::Main kit(argc,argv);         Gtk::Window *pWnd;        gtk_rc_parse("E:\\theme-viewer\\themes\\gtk-2.0\\gtkrc");       Glib::RefPtr<Gnome::Glade::Xml> refXml;     try     {         refXml = Gnome::Glade::Xml::create("main.glade");     }     catch(const Gnome::Glade::XmlError& ex)     {         Gtk::MessageDialog dialog("Load glade file failed!", false,       \                                   Gtk::MESSAGE_ERROR, Gtk::BUTTONS_OK);         dialog.run();               return 1;     }         refXml->get_widget("main", pWnd);     if(pW