跳至主要内容

【转】AMBA、AHB、APB总线简介

AMBA简介

随着深亚微米工艺技术日益成熟,集成电路芯片的规模越来越大。数字IC从基于时序驱动的设计方法,发展到基于IP复用的设计方法,并在SOC设计中得到了广泛应用。在基于IP复用的SoC设计中,片上总线设计是最关键的问题。为此,业界出现了很多片上总线标准。其中,由ARM公司推出的AMBA片上总线受到了广大IP开发商和SoC系统集成者的青睐,已成为一种流行的工业标准片上结构。AMBA规范主要包括了AHB(Advanced High performance Bus)系统总线和APB(Advanced Peripheral Bus)外围总线。 

AMBA
片上总线


       AMBA 2.0规范包括四个部分:AHB、ASB、APB和Test Methodology。AHB的相互连接采用了传统的带有主模块和从模块的共享总线,接口与互连功能分离,这对芯片上模块之间的互连具有重要意义。AMBA已不仅是一种总线,更是一种带有接口模块的互连体系。下面将简要介绍比较重要的AHB和APB总线。

基于AMBA的片上系统

       一个典型的基于AMBA总线的系统框图如图3所示。

       大多数挂在总线上的模块(包括处理器)只是单一属性的功能模块:主模块或者从模块。主模块是向从模块发出读写操作的模块,如CPU,DSP等;从模块是接受命令并做出反应的模块,如片上的RAM,AHB/APB 桥等。另外,还有一些模块同时具有两种属性,例如直接存储器存取(DMA)在被编程时是从模块,但在系统读传输数据时必须是主模块。如果总线上存在多个主模块,就需要仲裁器来决定如何控制各种主模块对总线的访问。虽然仲裁规范是AMBA总线规范中的一部分,但具体使用的算法由RTL设计工程师决定,其中两个最常用的算法是固定优先级算法和循环制算法。AHB总线上最多可以有16个主模块和任意多个从模块,如果主模块数目大于16,则需再加一层结构(具体参阅ARM公司推出的Multi-layer AHB规范)。APB 桥既是APB总线上唯一的主模块,也是AHB系统总线上的从模块。其主要功能是锁存来自AHB系统总线的地址、数据和控制信号,并提供二级译码以产生APB外围设备的选择信号,从而实现AHB协议到APB协议的转换。

=================================================================

=================================================================

AHB简介

       AHB主要用于高性能模块(如CPU、DMA和DSP等)之间的连接,作为SoC的片上系统总线,它包括以下一些特性:单个时钟边沿操作;非三态的实现方式;支持突发传输;支持分段传输;支持多个主控制器;可配置32位~128位总线宽度;支持字节、半字节和字的传输。AHB 系统由主模块、从模块和基础结构(Infrastructure)3部分组成,整个AHB总线上的传输都由主模块发出,由从模块负责回应。基础结构则由仲裁器(arbiter)、主模块到从模块的多路器、从模块到主模块的多路器、译码器(decoder)、虚拟从模块(dummy Slave)、虚拟主模块(dummy Master)所组成。其互连结构如图1所示。
 


=================================================================

=================================================================

APB简介

       APB主要用于低带宽的周边外设之间的连接,例如UART、1284等,它的总线架构不像AHB支持多个主模块,在APB里面唯一的主模块就是APB 桥。其特性包括:两个时钟周期传输;无需等待周期和回应信号;控制逻辑简单,只有四个控制信号。APB上的传输可以用如图2所示的状态图来说明。

       1)系统初始化为IDLE状态,此时没有传输操作,也没有选中任何从模块。

       2)当有传输要进行时,PSELx=1,PENABLE=0,系统进入SETUP状态,并只会在SETUP 状态停留一个周期。当PCLK的下一个上升沿时到来时,系统进入ENABLE 状态。

       3)系统进入ENABLE状态时,维持之前在SETUP 状态的PADDR、PSEL、PWRITE不变,并将PENABLE置为1。传输也只会在ENABLE状态维持一个周期,在经过SETUP与ENABLE状态之后就已完成。之后如果没有传输要进行,就进入IDLE状态等待;如果有连续的传输,则进入SETUP状态。

评论

此博客中的热门博文

【转】cs8900网卡的移植至基于linux2.6内核的s3c2410平台

cs8900网卡的移植至基于linux2.6内核的s3c2410平台(转) 2008-03-11 20:58 硬件环境:SBC-2410X开发板(CPU:S3C2410X) 内核版本:2.6.11.1 运行环境:Debian2.6.8 交叉编译环境:gcc-3.3.4-glibc-2.3.3 第一部分 网卡CS8900A驱动程序的移植 一、从网上将Linux内核源代码下载到本机上,并将其解压: #tar jxf linux-2.6.11.1.tar.bz2 二、打开内核顶层目录中的Makefile文件,这个文件中需要修改的内容包括以下两个方面。 (1)指定目标平台。 移植前:         ARCH?= $(SUBARCH) 移植后: ARCH            :=arm (2)指定交叉编译器。 移植前: CROSS_COMPILE ?= 移植后: CROSS_COMPILE   :=/opt/crosstool/arm-s3c2410-linux-gnu/gcc-3.3.4-glibc-2.3.3/bin/arm-s3c2410-linux-gnu- 注:这里假设编译器就放在本机的那个目录下。 三、添加驱动程序源代码,这涉及到以下几个方面。(1)、从网上下载了cs8900.c和cs8900.h两个针对2.6.7的内核的驱动程序源代码,将其放在drivers/net/arm/目录下面。 #cp cs8900.c ./drivers/net/arm/ #cp cs8900.h ./drivers/net/arm/ 并在cs8900_probe()函数中,memset (&priv,0,sizeof (cs8900_t));函数之后添加如下两条语句: __raw_writel(0x2211d110,S3C2410_BWSCON); __raw_writel(0x1f7c,S3C2410_BANKCON3); 注:其原因在"第二部分"解释。 (2)、修改drivers/net/arm/目录下的Kconfig文件,在最后添加如...

【转】LCD驱动程序往2.6.11内核的移植总结

硬件环境:SBC-2440X开发板(CPU:S3C2440X) 内核版本:2.6.11.1 运行环境:Debian2.6.8 交叉编译环境:gcc-3.3.4-glibc-2.3.3 注:本驱动移植是基于s3c2400 framebuffer 的驱动。 一、从网上将Linux内核源代码下载到本机上,并将其解压: #tar jxf linux-2.6.11.1.tar.bz2 二、打开内核顶层目录中的Makefile文件,这个文件中需要修改的内容包括以下两个方面。 (1)指定目标平台。 移植前: ARCH ?= $(SUBARCH) 移植后: ARCH :=arm (2)指定交叉编译器。 移植前: CROSS_COMPILE ?= 移植后: CROSS_COMPILE :=/opt/crosstool/arm-s3c2440-linux-gnu/gcc-3.3.4-glibc-2.3.3/bin/arm-s3c2440-linux-gnu- 注:这里假设编译器就放在本机的那个目录下。 三、添加并修改驱动程序源代码,这涉及到以下几个方面。 (1)、将开发板配带的LCD驱动程序s3c2400fb.c、s3c2400fb.h源程序放到drivers/video/目录下,并修改名字为s3c2440fb.c\s3c2400fb.h。 #cp s3c2400fb.c . drivers/video/s3c2410fb.c (2)、在s3c2440fb.c驱动程序里面添加:sbc_gpio_con_set()、sbc_gpio_pullup_set()、 sbc_gpio_function_set()的声明以及实现代码用以替代2.4.18代码中的write_gpio_bit()、 set_gpio_ctrl()函数,因为在2.4.18中这两个函数都是用指针的方式对CPU寄存器进行设置,而在2.6.11的驱动程序里面用了 __raw_writel()的方式对寄存器设置进行了封装。 在驱动程序移植过程中由于是基于S3C2400的驱动,所以主要的修改工作就是根据所用开发板的硬件修改相应的寄存器的设置。 主要的修改有:s3c2440fb_mach_info结构,这个结果主要定义了所用显示屏的一些信息,如时钟、大小等;修改 c2400fb_activate_var函数中关于寄存器的设...