跳至主要内容

【转】I2C 24LC02 C读写例程(PIC单片机)

程序匠人 发表于 2008-10-28 14:06:00  阅读全文(332) | 回复(0) | 引用通告(0) | 编辑

I2C 24LC02 C读写例程(PIC单片机)

 I2C总线特点
   I2C总线最主要的优点是其简单性和有效性。由于接口直接在组件之上,因此I2C总线占用的空间非常小,减少了电路板的空间和芯片管脚的数量,降低了互联成本。总线的长度可高达25英尺,并且能够以10Kbps的最大传输速率支持40个组件。I2C总线的另一个优点是,它支持多主控(multimastering), 其中任何能够进行发送和接收的设备都可以成为主总线。一个主控能够控制信号的传输和时钟频率。当然,在任何时间点上只能有一个主控。

2   I2C总线工作原理
I2C总线上的数据稳定规则,SCL为高电平时SDA上的数据保持稳定,SCL为低电平时允许SDA变化。如果SCL处于高电平时,SDA上产生下降沿,则认为是起始位,SDA上的上升沿认为是停止位。通信速率分为常规模式(时钟频率100kHz)和快速模式(时钟频率400kHz)。同一总线上可以连接多个带有I2C接口的器件,每个器件都有一个唯一的地址,既可以是单接收的器件,也可以是能够接收发送的器件。

 

每次数据传输都是以一个起始位开始,而以停止位结束。传输的字节数没有限制。最高有效位将首先被传输,接收方收到第8位数据后会发出应答位。数据传输通常分为两种:主设备发送从设备接收和从设备发送主设备接收。这两种模式都需要主机发送起始位和停止位,应答位由接收方产生。从设备地址一般是1或2个字节,用于区分连接在同一I2C上的不同器件。

I2C总线在传送数据过程中共有三种类型信号, 它们分别是:开始信号、结束信号和应答信号。
   开始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。
   结束信号:SCL为低电平时,SDA由低电平向高电平跳变,结束传送数据。
   应答信号:接收数据的IC在接收到8bit数据后,向发送数据的IC发出特定的低电平脉冲,表示已收到数据。CPU向受控单元发出一个信号后,等待受控单元发出一个应答信号,CPU接收到应答信号后,根据实际情况作出是否继续传递信号的判断。若未收到应答信号,由判断为受控单元出现故障。

在I2C总线中只有主发送和主接收两种操作方式。在系统初始化时,由指令控制CPU送出相关的数据,经接口送到I2C寄存器内。通过初始化这些寄存器,可以实现I2C总线的主模式控制,以及实现I2C总线上的从设备读写。

      当主设备和其中的一个从设备交换数据时,主设备首先发出一个启动Start信号,这个信号被所有的从设备接收。即从设备准备接收CPU的信号,然后主设备再发出它要通信的从设备地址。接下来,所有的从设备将收到的这个地址和它们自己的地址进行比较。

如果收到的地址和它们自己的地址不同,则什么都不做,只是等待主设备发出停止stop信号;如果收到的地址和它自己的地址相同,它就发出一个信号给主设备,这个信号称为应答Acknowledge信号。当主设备收到应答信号后,它就开始向从设备发送数据或者从从设备接收数据。当所有操作都进行完毕时,主设备发出一个Stop信号,通信完毕,释放I2C总线;然后所有的从设备都等待下一次Start信号的到来。

3   总线基本操作
   I2C规程运用主/从双向通讯。器件发送数据到总线上,则定义为发送器,器件接收数据则定义为接收器。主器件和从器件都可以工作于接收和发送状态。 总线必须由主器件(通常为微控制器)控制,主器件产生串行时钟(SCL)控制总线的传输方向,并产生起始和停止条件。SDA线上的数据状态仅在SCL为低电平的期间才能改变,SCL为高电平的期间,SDA状态的改变被用来表示起始和停止条件。
3.1 控制字节
   在起始条件之后,必须是器件的控制字节,其中高四位为器件类型识别符(不同的芯片类型有不同的定义,EEPROM一般应为1010),接着三位为片选,最后一位为读写位,当为1时为读操作,为0时为写操作。

1.写过程

(1)上电后等待一个延时(1ms)。

(2)器件寻址,给一个起始信号(SCL为高电平时SDA给一个下降沿)。发送从器件地址,高5位为10110,然后根据A1/A0(如果和器件的地址相同则那个器件会应答)进行读/写控制(O为读)。

(3)应答,器件在SCL的第9个周期时SDA给出一个低电平,作为应答信号。

(4)开始写有两种模式:字节写模式和页写模式。

・字节模式:给出A15~A8应答,给出A7~A0应答;然后给出DATA和停止信号     (SCL为高电平时,SDA给出一个上升沿),接着要等待一个擦写时间。

・页写模式:给出地址以后连续给出64个数据。如果多于64个数据,则地址计数器自动翻转。(如果少于64昵,估计是没有问题的,但是需要实验验证。)

(5)判断擦写操作是否完毕的一个方法(应答查询),如果器件还处于擦写状态,则不会应答器件寻址;如果有应答,则说明擦写完毕。

2.读过程

(1)上电以后等待一个延时(lms)。

(2)器件寻址。

(3)应答。

(4)开始读有三种模式:立即当前地址读、选择/随机读、连续读。

・立即当前地址读:如果上次读/写的操作地址为N,则现在是N+1。不需要ACK,但是需要Stop信号。

・选择/随机读:先伪写(用于给出一个地址),然后再次启动,读取数据。

・连续读:读取一个以后给一个应答,这样器件会再给出下一个地址的数据内容。

(5)开始数据传输Start后、停止数据传输Stop前,SCL高电平期间,SDA上为有效数据。

/*******************************************************************
一、程序说明:
1, 24LC02器件地址是1010000R/W.
2, 数组写入24LC02采取页写方式.
3, 数组code从24LC02读出时采取自由读方式.
4, 采用4.00M晶体。
5,采用软件I2C。

二、硬件连接:
1, SDA------->23 pin.(当然你可以任意选择脚位)
2, SCL------->18 Pin.(当然你可以任意选择脚位)
3, PORTD----->外接8个LED,显示读出的数据,在这里,读出的刚好是一个闪动的流水灯状态。

*******************************************************************/
#i nclude "pic.h"

#define uchar unsigned char
#define nop() asm("nop"
#define SCL TRISC3
#define SDA TRISC4

void start_i2c();
void stop_i2c();
void send_byte(uchar c);
uchar receive_byte();
void I_send_str(uchar sla,uchar suba,uchar *s,uchar no);
void delay_250ms();
void i2c_error ();

uchar code[]={0x00,0x01,0x03,0x07,0x0f,0x1f,0x3f,0x7f,0xff};
uchar no,ack,c,data;


void main(void)
{
uchar i;
TRISC=0Xff; //C口设为输入 RC3为SCL线,RC4为SDA线。
PORTC=0X00;
TRISD=0X00; //D口为输出,显示IC24LC02中读出的内容
PORTD=0X00; //初始显示全亮

I_send_str(0xa0,0x00,code,9); //页写入code数组到24LC02,器件地址为0Xa0,子地址为0X00,共9个数。

delay_250ms();


///////////开始读出到D口进行显示,根据Random read时序图。
while (1)
{
for (i=0x00;i<0x09;i++)
{
start_i2c();
send_byte(0xa0); //发送器件地址,即DEVICE ADDRESS。
if (ack==0) i2c_error(); //如果24LC02无应答。则进入I2C ERROR错误指示。
send_byte(i); //发送字地址,即WORD ADDRESS。D口显示数组。
if (ack==0) i2c_error();
start_i2c(); //重新启动总线。
send_byte(0xa1); //发送读命令和器件地址DEVICE ADDRESS。
if (ack==0) i2c_error();
data=receive_byte();
stop_i2c();
PORTD=data;
delay_250ms();
}
}
}


/*******************************************************************
起动总线函数
函数原型: void start_i2c();
Function: start on the I2C bus
*******************************************************************/
void start_i2c()
{
SDA=1; //发送启始条件的数据信号
nop();
SCL=1;
nop();nop();nop();nop();nop(); //24LC02要求建立时间大于4,7S
SDA=0; //发送起始信号
nop();nop();nop();nop();nop();
SCL=0; //钳住I2C总线,准备发送数据或接收数据
nop();nop();
}


/*******************************************************************
停止总线函数
函数原型: void stop_i2c();
Function: stop the I2C bus
*******************************************************************/
void stop_i2c()
{

SDA=0; //发送结束条件的数据信号
nop();
SCL=1;
nop();nop();nop();nop();nop();
SDA=1;
nop();nop();nop();nop();
}

/*=================================================================
字节数据传送函数
函数原型: void send_byte(uchar c);
Function: 将数据C发送出去,可以是地址,也可以是数据,发完后等待回应,并对此状态
位进行操作(不应答或非应答都使ack=0 ),发送数据正常,ack=1;ack=0
表示被控器无应答或损坏。
==================================================================*/
void send_byte(uchar c)
{
uchar bit_count;
for (bit_count=0;bit_count<8;bit_count++)
{
if ((c<<bit_count)&0x80) {SDA=1;}
else {SDA=0;}
nop();
SCL=1;
nop();nop();nop();nop();nop();
SCL=0;
}
nop();nop();
SDA=1;
nop();nop();
SCL=1;
nop();nop();nop();
if (RC4==1) ack=0;
else ack=1; //用ASK=1为有应答信号
SCL=0;
nop();nop();
}

/*==================================================================
字节数据接收函数
函数原型:uchar receive_byte();
FUNCTION: 用来接收从器件传来的数据,并判断总线错误(不发应答信号),
发完后请用应答函数。
===================================================================*/
uchar receive_byte()
{
uchar retc,bit_count;
retc=0;
SDA=1;
for (bit_count=0;bit_count<8;bit_count++)
{
nop();
SCL=0;
nop();nop();nop();nop();nop();
SCL=1;
nop();nop();
retc=retc<<1;
if (RC4==1) retc=retc+1;
nop();nop();
}
SCL=0;
nop();nop();
return (retc);
}


/*================================================================
向有子地址器件发送多字节数据函数
函数原型: bit I_send_str(uchar sla,uchar suba,uchar *s,uchar no);
Function: 从启动总线到发送地址,数据,结束总线的全过程,从器件地址sla。如果
返回1表示操作成功,否则操作有误。
=================================================================*/
void I_send_str(uchar sla,uchar suba,uchar *s,uchar no)
{
uchar i;
start_i2c();
send_byte(sla);
if (ack==0) i2c_error();
send_byte(suba);
if (ack==0) i2c_error();
for (i=0;i<no;i++)
{
send_byte(*s);
if (ack==0) i2c_error();
s++;
}
stop_i2c();
// return(1);
}

/*****************************************************************
延时函数
函数原型: void delay_250ms();
FUNCTION: 延明250ms
*****************************************************************/
void delay_250ms()
{
unsigned int d=24999;
while (--d);
}

/*****************************************************************
总线错误函数
函数原型: void i2c_error();
Function: 通过RD7闪动8次表示总线操作失败一次报警。
*****************************************************************/
void i2c_error ()
{
uchar i;
for (i=0;i<8;i++)
{
RD7=0;
delay_250ms();
RD7=1;
delay_250ms();
}

}
/**********END**************/

评论

此博客中的热门博文

【转】AMBA、AHB、APB总线简介

AMBA 简介 随着深亚微米工艺技术日益成熟,集成电路芯片的规模越来越大。数字IC从基于时序驱动的设计方法,发展到基于IP复用的设计方法,并在SOC设计中得到了广泛应用。在基于IP复用的SoC设计中,片上总线设计是最关键的问题。为此,业界出现了很多片上总线标准。其中,由ARM公司推出的AMBA片上总线受到了广大IP开发商和SoC系统集成者的青睐,已成为一种流行的工业标准片上结构。AMBA规范主要包括了AHB(Advanced High performance Bus)系统总线和APB(Advanced Peripheral Bus)外围总线。   AMBA 片上总线        AMBA 2.0 规范包括四个部分:AHB、ASB、APB和Test Methodology。AHB的相互连接采用了传统的带有主模块和从模块的共享总线,接口与互连功能分离,这对芯片上模块之间的互连具有重要意义。AMBA已不仅是一种总线,更是一种带有接口模块的互连体系。下面将简要介绍比较重要的AHB和APB总线。 基于 AMBA 的片上系统        一个典型的基于AMBA总线的系统框图如图3所示。        大多数挂在总线上的模块(包括处理器)只是单一属性的功能模块:主模块或者从模块。主模块是向从模块发出读写操作的模块,如CPU,DSP等;从模块是接受命令并做出反应的模块,如片上的RAM,AHB/APB 桥等。另外,还有一些模块同时具有两种属性,例如直接存储器存取(DMA)在被编程时是从模块,但在系统读传输数据时必须是主模块。如果总线上存在多个主模块,就需要仲裁器来决定如何控制各种主模块对总线的访问。虽然仲裁规范是AMBA总线规范中的一部分,但具体使用的算法由RTL设计工程师决定,其中两个最常用的算法是固定优先级算法和循环制算法。AHB总线上最多可以有16个主模块和任意多个从模块,如果主模块数目大于16,则需再加一层结构(具体参阅ARM公司推出的Multi-layer AHB规范)。APB 桥既是APB总线上唯一的主模块,也是AHB系统总线上的从模块。其主要功能是锁存来自AHB系统总...

【转】C++/CLI程序进程之间的通讯

 现在,把大型软件项目分解为一些相交互的小程序似乎变得越来越普遍,程序各部分之间的通讯可使用某种类型的通讯协议,这些程序可能运行在不同的机器上、不同的操作系统中、以不同的语言编写,但也有可能只在同一台机器上,实际上,这些程序可看成是同一程序中的不同线程。而本文主要讨论C++/CLI程序间的通讯,当然,在此是讨论进程间通讯,而不是网络通讯。    简介   试想一个包含数据库查询功能的应用,通常有一个被称为服务端的程序,等待另一个被称为客户端程序发送请求,当接收到请求时,服务端执行相应功能,并把结果(或者错误信息)返回给客户端。在许多情况中,有着多个客户端,所有的请求都会在同一时间发送到同一服务端,这就要求服务端程序要更加高级、完善。   在某些针对此任务的环境中,服务端程序可能只是众多程序中的一个程序,其他可能也是服务端或者客户端程序,实际上,如果我们的数据库服务端需要访问不存在于本机的文件,那么它就可能成为其他某个文件服务器的一个客户端。一个程序中可能会有一个服务线程及一个或多个客户线程,因此,我们需小心使用客户端及服务端这个术语,虽然它们表达了近似的抽象含义,但在具体实现上却大不相同。从一般的观点来看,客户端即为服务端所提供服务的"消费者",而服务端也能成为其他某些服务的客户端。    服务端套接字   让我们从一个具体有代表性的服务端程序开始(请看例1),此程序等待客户端发送一对整数,把它们相加之后返回结果给客户端。   例1: using namespace System; using namespace System::IO; using namespace System::Net; using namespace System::Net::Sockets; int main(array<String^>^ argv) { if (argv->Length != 1) { Console::WriteLine("Usage: Server port"); Environment::Exit(1); } int port = 0; try { port = Int32::Parse(argv[0]); } catch (FormatException^ e) { Console::Wri...

【转】VxWorks入门

1.VxWorks开发方式:交叉开发,即将开发分为主机(host)和目标机(target)两部分。 类似于dos下C语言程序的开发。 合并开发的优点:简单 缺点:资源消耗量大,CPU支持,非标准体系的支持 host (Tornado) target(vxWork) 小程序模块 vxWorks实际采用开发模式 Tornado提供:编辑,编译,调试,性能分析工具,是vxWorks的开发工具 vxWorks:面向对象可以剪裁的实际运行操作系统 2.vxWorks启动方式 <1>Rom方式 (vxWork_rom) vxWorks直接烧入rom <2>Rom引导方式(bootrom+vxWorks) 其中bootrom烧入rom,vxWorks可以通过从串口,网口,硬盘,flash等下载!这里的bootrom不是开发环境中的bootable,在开发环境里bootable指的是vxWorks,downloadable指application 3.调试 <1>attachs/20060907_164540_564.rar 用来在多任务调试时将调试对象绑定到某个任务 <2>任务级调试(attachs/20060907_164540_564.rar taskName) 单个任务的调试不会影响到其他任务的运行,主要用来调用户的应用程序。 全局断点:在调另一任务或本任务时,系统运行本任务断点,则停下。各任务要配合使用。 任务断点:调本任务时,系统运行到本任务断点,则停下。如果没有attachs/20060907_164540_564.rar到本任务,不起作用。 一次性断点:跑到一次之后自动删除。 <3>系统级调试(attachs/20060907_164540_564.rar system) 把所有task和系统core、中断看成一个整体,可用于调试系统和中断。对中断调试,如果不是系统级调试,无论是那种断点都不起作用 !wdbAgent不在调试范围内,当任务级调试时工作在中断方式,系统级调试工作在轮询方式。 !可是使用命令行方式的调试,参看crossWind教程。 4.调度 优先级调度(无条件) 时间片:同优先级,如果时间片没有打开,任务采取先到先运行,运行完毕在交出cpu,如果打开,则轮流使用cpu。 !死循环使比它...