跳至主要内容

【转】Select函数实现原理分析

select需要驱动程序的支持,驱动程序实现fops内的poll函数。select通过每个设备文件对应的poll函数提供的信息判断当前是否有资源可用(如可读或写),如果有的话则返回可用资源的文件描述符个数,没有的话则睡眠,等待有资源变为可用时再被唤醒继续执行。

 

下面我们分两个过程来分析select:

 

1. select的睡眠过程

 

支持阻塞操作的设备驱动通常会实现一组自身的等待队列如读/写等待队列用于支持上层(用户层)所需的BLOCK或NONBLOCK操作。当应用程序通过设备驱动访问该设备时(默认为BLOCK操作),若该设备当前没有数据可读或写,则将该用户进程插入到该设备驱动对应的读/写等待队列让其睡眠一段时间,等到有数据可读/写时再将该进程唤醒。

 

select就是巧妙的利用等待队列机制让用户进程适当在没有资源可读/写时睡眠,有资源可读/写时唤醒。下面我们看看select睡眠的详细过程。

 

select会循环遍历它所监测的fd_set内的所有文件描述符对应的驱动程序的poll函数。驱动程序提供的poll函数首先会将调用select的用户进程插入到该设备驱动对应资源的等待队列(如读/写等待队列),然后返回一个bitmask告诉select当前资源哪些可用。当select循环遍历完所有fd_set内指定的文件描述符对应的poll函数后,如果没有一个资源可用(即没有一个文件可供操作),则select让该进程睡眠,一直等到有资源可用为止,进程被唤醒(或者timeout)继续往下执行。

 

下面分析一下代码是如何实现的。

select的调用path如下:sys_select -> core_sys_select -> do_select

其中最重要的函数是do_select, 最主要的工作是在这里, 前面两个函数主要做一些准备工作。do_select定义如下:

int do_select(int n, fd_set_bits *fds, s64 *timeout)

{

         struct poll_wqueues table;

         poll_table *wait;

         int retval, i;

 

         rcu_read_lock();

         retval = max_select_fd(n, fds);

         rcu_read_unlock();

 

         if (retval < 0)

                   return retval;

         n = retval;

 

         poll_initwait(&table);

         wait = &table.pt;

         if (!*timeout)

                   wait = NULL;

         retval = 0;        //retval用于保存已经准备好的描述符数,初始为0

         for (;;) {

                   unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp;

                   long __timeout;

 

                   set_current_state(TASK_INTERRUPTIBLE);    //将当前进程状态改为TASK_INTERRUPTIBLE

 

                   inp = fds->in; outp = fds->out; exp = fds->ex;

                   rinp = fds->res_in; routp = fds->res_out; rexp = fds->res_ex;

 

                   for (i = 0; i < n; ++rinp, ++routp, ++rexp) { //遍历每个描述符

                            unsigned long in, out, ex, all_bits, bit = 1, mask, j;

                            unsigned long res_in = 0, res_out = 0, res_ex = 0;

                            const struct file_operations *f_op = NULL;

                            struct file *file = NULL;

 

                            in = *inp++; out = *outp++; ex = *exp++;

                            all_bits = in | out | ex;

                            if (all_bits == 0) {

                                     i += __NFDBITS;       // //如果这个字没有待查找的描述符, 跳过这个长字(32位)

                                     continue;

                            }

 

                            for (j = 0; j < __NFDBITS; ++j, ++i, bit <<= 1) {     //遍历每个长字里的每个位

                                     int fput_needed;

                                     if (i >= n)

                                               break;

                                     if (!(bit & all_bits))

                                               continue;

                                     file = fget_light(i, &fput_needed);

                                     if (file) {

                                               f_op = file->f_op;

                                               MARK(fs_select, "%d %lld",

                                                                 i, (long long)*timeout);

                                               mask = DEFAULT_POLLMASK;

                                               if (f_op && f_op->poll)

/* 在这里循环调用所监测的fd_set内的所有文件描述符对应的驱动程序的poll函数 */

                                                        mask = (*f_op->poll)(file, retval ? NULL : wait);

                                               fput_light(file, fput_needed);

                                               if ((mask & POLLIN_SET) && (in & bit)) {

                                                        res_in |= bit; //如果是这个描述符可读, 将这个位置位

                                                        retval++;  //返回描述符个数加1

                                               }

                                               if ((mask & POLLOUT_SET) && (out & bit)) {

                                                        res_out |= bit;

                                                        retval++;

                                               }

                                               if ((mask & POLLEX_SET) && (ex & bit)) {

                                                        res_ex |= bit;

                                                        retval++;

                                               }

                                     }

                                     cond_resched();

                            }

//返回结果

                            if (res_in)

                                     *rinp = res_in;

                            if (res_out)

                                     *routp = res_out;

                            if (res_ex)

                                     *rexp = res_ex;

                   }

                   wait = NULL;

/* 到这里遍历结束。retval保存了检测到的可操作的文件描述符的个数。如果有文件可操作,则跳出for(;;)循环,直接返回。若没有文件可操作且timeout时间未到同时没有收到signal,则执行schedule_timeout睡眠。睡眠时间长短由__timeout决定,一直等到该进程被唤醒。

那该进程是如何被唤醒的?被谁唤醒的呢?

我们看下面的select唤醒过程*/

                   if (retval || !*timeout || signal_pending(current))

                            break;

                  if(table.error) {

                            retval = table.error;

                            break;

                   }

 

                   if (*timeout < 0) {

                            /* Wait indefinitely */

                            __timeout = MAX_SCHEDULE_TIMEOUT;

                   } else if (unlikely(*timeout >= (s64)MAX_SCHEDULE_TIMEOUT - 1)) {

                            /* Wait for longer than MAX_SCHEDULE_TIMEOUT. Do it in a loop */

                            __timeout = MAX_SCHEDULE_TIMEOUT - 1;

                            *timeout -= __timeout;

                   } else {

                            __timeout = *timeout;

                            *timeout = 0;

                   }

                   __timeout = schedule_timeout(__timeout);

                   if (*timeout >= 0)

                            *timeout += __timeout;

         }

         __set_current_state(TASK_RUNNING);

 

         poll_freewait(&table);

 

         return retval;

}

 

2.  select的唤醒过程

前面介绍了select会循环遍历它所监测的fd_set内的所有文件描述符对应的驱动程序的poll函数。驱动程序提供的poll函数首先会将调用select的用户进程插入到该设备驱动对应资源的等待队列(如读/写等待队列),然后返回一个bitmask告诉select当前资源哪些可用。

一个典型的驱动程序poll函数实现如下:

(摘自《Linux Device Drivers � ThirdEdition》Page 165)

static unsigned int scull_p_poll(struct file *filp, poll_table *wait)

{

    struct scull_pipe *dev = filp->private_data;

    unsigned int mask = 0;

    /*

     * The buffer is circular; it is considered full

     * if "wp" is right behind "rp" and empty if the

     * two are equal.

     */

    down(&dev->sem);

    poll_wait(filp, &dev->inq,  wait);

    poll_wait(filp, &dev->outq, wait);

    if (dev->rp != dev->wp)

        mask |= POLLIN | POLLRDNORM;    /* readable */

    if (spacefree(dev))

        mask |= POLLOUT | POLLWRNORM;   /* writable */

    up(&dev->sem);

    return mask;

}

将用户进程插入驱动的等待队列是通过poll_wait做的。

Poll_wait定义如下:

static inline void poll_wait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p)

{

         if (p && wait_address)

                   p->qproc(filp, wait_address, p);

}

这里的p->qproc在do_select内poll_initwait(&table)被初始化为__pollwait,如下:

void poll_initwait(struct poll_wqueues *pwq)

{

         init_poll_funcptr(&pwq->pt, __pollwait);

         pwq->error = 0;

         pwq->table = NULL;

         pwq->inline_index = 0;

}

__pollwait定义如下:

/* Add a new entry */

static void __pollwait(struct file *filp, wait_queue_head_t *wait_address,

                                     poll_table *p)

{

         struct poll_table_entry *entry = poll_get_entry(p);

         if (!entry)

                   return;

         get_file(filp);

         entry->filp = filp;

         entry->wait_address = wait_address;

         init_waitqueue_entry(&entry->wait, current);

         add_wait_queue(wait_address,&entry->wait);

}

通过init_waitqueue_entry初始化一个等待队列项,这个等待队列项关联的进程即当前调用select的进程。然后将这个等待队列项插入等待队列wait_address。Wait_address即在驱动poll函数内调用poll_wait(filp, &dev->inq,  wait);时传入的该驱动的&dev->inq或者&dev->outq等待队列。

 

注: 关于等待队列的工作原理可以参考下面这篇文档:

http://blog.chinaunix.net/u2/60011/showart_1334657.html

 

到这里我们明白了select如何当前进程插入所有所监测的fd_set关联的驱动内的等待队列,那进程究竟是何时让出CPU进入睡眠状态的呢?

进入睡眠状态是在do_select内调用schedule_timeout(__timeout)实现的。当select遍历完fd_set内的所有设备文件,发现没有文件可操作时(即retval=0),则调用schedule_timeout(__timeout)进入睡眠状态。

 

唤醒该进程的过程通常是在所监测文件的设备驱动内实现的,驱动程序维护了针对自身资源读写的等待队列。当设备驱动发现自身资源变为可读写并且有进程睡眠在该资源的等待队列上时,就会唤醒这个资源等待队列上的进程。

举个例子,比如内核的8250 uart driver:

Uart是使用的Tty层维护的两个等待队列, 分别对应于读和写: (uart是tty设备的一种)

struct tty_struct {

         ……

         wait_queue_head_t write_wait;

         wait_queue_head_t read_wait;

         ……

}

当uart设备接收到数据,会调用tty_flip_buffer_push(tty);将收到的数据push到tty层的buffer。

然后查看是否有进程睡眠的读等待队列上,如果有则唤醒该等待会列。

过程如下:

serial8250_interrupt -> serial8250_handle_port -> receive_chars -> tty_flip_buffer_push ->

flush_to_ldisc -> disc->receive_buf

在disc->receive_buf函数内:

if (waitqueue_active(&tty->read_wait)) //若有进程阻塞在read_wait上则唤醒

wake_up_interruptible(&tty->read_wait);

 

到这里明白了select进程被唤醒的过程。由于该进程是阻塞在所有监测的文件对应的设备等待队列上的,因此在timeout时间内,只要任意个设备变为可操作,都会立即唤醒该进程,从而继续往下执行。这就实现了select的当有一个文件描述符可操作时就立即唤醒执行的基本原理。

 

Referece:

1.       Linux Device Drivers � ThirdEdition

2.       内核等待队列机制原理分析

http://blog.chinaunix.net/u2/60011/showart_1334657.html

3.       Kernel code : Linux 2.6.18_pro500 - Montavista


本文来自: (www.91linux.com) 详细出处参考:http://www.91linux.com/html/article/kernel/20081027/13698.html

评论

此博客中的热门博文

【转】AMBA、AHB、APB总线简介

AMBA 简介 随着深亚微米工艺技术日益成熟,集成电路芯片的规模越来越大。数字IC从基于时序驱动的设计方法,发展到基于IP复用的设计方法,并在SOC设计中得到了广泛应用。在基于IP复用的SoC设计中,片上总线设计是最关键的问题。为此,业界出现了很多片上总线标准。其中,由ARM公司推出的AMBA片上总线受到了广大IP开发商和SoC系统集成者的青睐,已成为一种流行的工业标准片上结构。AMBA规范主要包括了AHB(Advanced High performance Bus)系统总线和APB(Advanced Peripheral Bus)外围总线。   AMBA 片上总线        AMBA 2.0 规范包括四个部分:AHB、ASB、APB和Test Methodology。AHB的相互连接采用了传统的带有主模块和从模块的共享总线,接口与互连功能分离,这对芯片上模块之间的互连具有重要意义。AMBA已不仅是一种总线,更是一种带有接口模块的互连体系。下面将简要介绍比较重要的AHB和APB总线。 基于 AMBA 的片上系统        一个典型的基于AMBA总线的系统框图如图3所示。        大多数挂在总线上的模块(包括处理器)只是单一属性的功能模块:主模块或者从模块。主模块是向从模块发出读写操作的模块,如CPU,DSP等;从模块是接受命令并做出反应的模块,如片上的RAM,AHB/APB 桥等。另外,还有一些模块同时具有两种属性,例如直接存储器存取(DMA)在被编程时是从模块,但在系统读传输数据时必须是主模块。如果总线上存在多个主模块,就需要仲裁器来决定如何控制各种主模块对总线的访问。虽然仲裁规范是AMBA总线规范中的一部分,但具体使用的算法由RTL设计工程师决定,其中两个最常用的算法是固定优先级算法和循环制算法。AHB总线上最多可以有16个主模块和任意多个从模块,如果主模块数目大于16,则需再加一层结构(具体参阅ARM公司推出的Multi-layer AHB规范)。APB 桥既是APB总线上唯一的主模块,也是AHB系统总线上的从模块。其主要功能是锁存来自AHB系统总线的地址、数据和控制信号,并提供二级译码以产生APB外围设备的选择信号,从而实现AHB协议到APB协议的转换。 ====================================

【转】GPIO编程模拟I2C入门

ARM编程:ARM普通GPIO口线模拟I2C  请教个问题: 因为需要很多EEPROM进行点对点控制,所以我现在要用ARM的GPIO模拟I2C,管脚方向我设 置的是向外的。我用网上的RW24C08的万能程序修改了一下,先进行两根线的模拟,SDA6, SCL6,但是读出来的数不对。我做了一个简单的实验,模拟SDA6,SCL6输出方波,在示波 器上看到正确方波,也就是说,我的输出控制是没问题的。 哪位大哥能指点一下,是否在接收时管脚方向要设为向内?(不过IOPIN不管什么方向都可 以读出当前状态值的阿) 附修改的RW24C08()程序: #define  SomeNOP() delay(300); /**/ /* *********************************  RW24C08   **************************************** */ /**/ /* ----------------------------------------------------------------------------- ---  调用方式:void I2CInit(void)   函数说明:私有函数,I2C专用 ------------------------------------------------------------------------------- -- */ void  I2CInit( void ) ... {  IO0CLR  =  SCL6;      // 初始状态关闭总线  SomeNOP();  // 延时   I2CStop();  // 确保初始化,此时数据线是高电平 }   /**/ /* ---------------------------------------------------------------------------- ----  调用方式:void I2CStart(void)   函数说明:私有函数,I2C专用 ------------------------------------------------------------------------------- -- */ void  I2CStart( void )

【转】cs8900网卡的移植至基于linux2.6内核的s3c2410平台

cs8900网卡的移植至基于linux2.6内核的s3c2410平台(转) 2008-03-11 20:58 硬件环境:SBC-2410X开发板(CPU:S3C2410X) 内核版本:2.6.11.1 运行环境:Debian2.6.8 交叉编译环境:gcc-3.3.4-glibc-2.3.3 第一部分 网卡CS8900A驱动程序的移植 一、从网上将Linux内核源代码下载到本机上,并将其解压: #tar jxf linux-2.6.11.1.tar.bz2 二、打开内核顶层目录中的Makefile文件,这个文件中需要修改的内容包括以下两个方面。 (1)指定目标平台。 移植前:         ARCH?= $(SUBARCH) 移植后: ARCH            :=arm (2)指定交叉编译器。 移植前: CROSS_COMPILE ?= 移植后: CROSS_COMPILE   :=/opt/crosstool/arm-s3c2410-linux-gnu/gcc-3.3.4-glibc-2.3.3/bin/arm-s3c2410-linux-gnu- 注:这里假设编译器就放在本机的那个目录下。 三、添加驱动程序源代码,这涉及到以下几个方面。(1)、从网上下载了cs8900.c和cs8900.h两个针对2.6.7的内核的驱动程序源代码,将其放在drivers/net/arm/目录下面。 #cp cs8900.c ./drivers/net/arm/ #cp cs8900.h ./drivers/net/arm/ 并在cs8900_probe()函数中,memset (&priv,0,sizeof (cs8900_t));函数之后添加如下两条语句: __raw_writel(0x2211d110,S3C2410_BWSCON); __raw_writel(0x1f7c,S3C2410_BANKCON3); 注:其原因在"第二部分"解释。 (2)、修改drivers/net/arm/目录下的Kconfig文件,在最后添加如下内容: Config ARM_CS8900    tristate "CS8900 support" depends on NET_ETHERNET && A