跳至主要内容

【转】Const用法小结

1. const常量,如const int max = 100;
优点:const常量有数据类型,而宏常量没有数据类型。编译器可以对前者进行类型安全检查,而对后者只进行字符替换,没有类型安全检查,并且在字符替换时可能会产生意料不到的错误(边际效应)



2. const 修饰类的数据成员。如:
class A

{

const int size;



}

const数据成员只在某个对象生存期内是常量,而对于整个类而言却是可变的。因为类可以创建多个对象,不同的对象其const数据成员的值可以不同。所以不能在类声明中初始化const数据成员,因为类的对象未被创建时,编译器不知道const 数据成员的值是什么。如

class A

{

const int size = 100; //错误

int array[size]; //错误,未知的size

}

const数据成员的初始化只能在类的构造函数的初始化表中进行。要想建立在整个类中都恒定的常量,应该用类中的枚举常量来实现。如

class A

{…

enum {size1=100, size2 = 200 };

int array1[size1];

int array2[size2];

}

枚举常量不会占用对象的存储空间,他们在编译时被全部求值。但是枚举常量的隐含数据类型是整数,其最大值有限,且不能表示浮点数。



3. const修饰指针的情况,见下式:

int b = 500;
const int* a = & [1]
int const *a = & [2]
int* const a = & [3]
const int* const a = & [4]

如果你能区分出上述四种情况,那么,恭喜你,你已经迈出了可喜的一步。不知道,也没关系,我们可以参考《Effective c++》Item21上的做法,如果const位于星号的左侧,则const就是用来修饰指针所指向的变量,即指针指向为常量;如果const位于星号的右侧,const就是修饰指针本身,即指针本身是常量。因此,[1]和[2]的情况相同,都是指针所指向的内容为常量(const放在变量声明符的位置无关),这种情况下不允许对内容进行更改操作,如不能*a = 3 ;[3]为指针本身是常量,而指针所指向的内容不是常量,这种情况下不能对指针本身进行更改操作,如a++是错误的;[4]为指针本身和指向的内容均为常量。




4. const的初始化

先看一下const变量初始化的情况
1) 非指针const常量初始化的情况:A b;
const A a = b;

2) 指针const常量初始化的情况:

A* d = new A();
const A* c = d;
或者:const A* c = new A();
3)引用const常量初始化的情况:
A f;
const A& e = f; // 这样作e只能访问声明为const的函数,而不能访问一

般的成员函数;

[思考1]: 以下的这种赋值方法正确吗?
const A* c=new A();
A* e = c;
[思考2]: 以下的这种赋值方法正确吗?
A* const c = new A();
A* b = c;









5. 另外const 的一些强大的功能在于它在函数声明中的应用。在一个函数声明中,const 可以修饰函数的返回值,或某个参数;对于成员函数,还可以修饰是整个函数。有如下几种情况,以下会逐渐的说明用法:A& operator=(const A& a);
void fun0(const A* a );
void fun1( ) const; // fun1( ) 为类成员函数
const A fun2( );

1) 修饰参数的const,如 void fun0(const A* a ); void fun1(const A& a);
调用函数的时候,用相应的变量初始化const常量,则在函数体中,按照const所修饰的部分进行常量化,如形参为const A* a,则不能对传递进来的指针的内容进行改变,保护了原指针所指向的内容;如形参为const A& a,则不能对传递进来的引用对象进行改变,保护了原对象的属性。
[注意]:参数const通常用于参数为指针或引用的情况,且只能修饰输入参数;若输入参数采用"值传递"方式,由于函数将自动产生临时变量用于复制该参数,该参数本就不需要保护,所以不用const修饰。

[总结]对于非内部数据类型的输入参数,因该将"值传递"的方式改为"const引用传递",目的是为了提高效率。例如,将void Func(A a)改为void Func(const A &a)

对于内部数据类型的输入参数,不要将"值传递"的方式改为"const引用传递"。否则既达不到提高效率的目的,又降低了函数的可理解性。例如void Func(int x)不应该改为void Func(const int &x)

2) 修饰返回值的const,如const A fun2( ); const A* fun3( );
这样声明了返回值后,const按照"修饰原则"进行修饰,起到相应的保护作用。const Rational operator*(const Rational& lhs, const Rational& rhs)
{
return Rational(lhs.numerator() * rhs.numerator(),
lhs.denominator() * rhs.denominator());
}

返回值用const修饰可以防止允许这样的操作发生:Rational a,b;
Radional c;
(a*B) = c;

一般用const修饰返回值为对象本身(非引用和指针)的情况多用于二目操作符重载函数并产生新对象的时候。
[总结]

1. 一般情况下,函数的返回值为某个对象时,如果将其声明为const时,多用于操作符的重载。通常,不建议用const修饰函数的返回值类型为某个对象或对某个对象引用的情况。原因如下:如果返回值为某个对象为const(const A test = A 实例)或某个对象的引用为const(const A& test = A实例) ,则返回值具有const属性,则返回实例只能访问类A中的公有(保护)数据成员和const成员函数,并且不允许对其进行赋值操作,这在一般情况下很少用到。

2. 如果给采用"指针传递"方式的函数返回值加const修饰,那么函数返回值(即指针)的内容不能被修改,该返回值只能被赋给加const 修饰的同类型指针。如:

const char * GetString(void);

如下语句将出现编译错误:

char *str=GetString();

正确的用法是:

const char *str=GetString();

3. 函数返回值采用"引用传递"的场合不多,这种方式一般只出现在类的赙值函数中,目的是为了实现链式表达。如:

class A

{…

A &operate = (const A &other); //负值函数

}
A a,b,c; //a,b,c为A的对象



a=b=c; //正常

(a=B)=c; //不正常,但是合法

若负值函数的返回值加const修饰,那么该返回值的内容不允许修改,上例中a=b=c依然正确。(a=B)=c就不正确了。
[思考3]: 这样定义赋值操作符重载函数可以吗?
const A& operator=(const A& a);

6. 类成员函数中const的使用
一般放在函数体后,形如:void fun() const;
任何不会修改数据成员的函数都因该声明为const类型。如果在编写const成员函数时,不慎修改了数据成员,或者调用了其他非const成员函数,编译器将报错,这大大提高了程序的健壮性。如:

class Stack

{

public:

void Push(int elem);

int Pop(void);

int GetCount(void) const; //const 成员函数

private:

int m_num;

int m_data[100];

};

int Stack::GetCount(void) const

{

++m_num; //编译错误,企图修改数据成员m_num

Pop(); //编译错误,企图调用非const函数

Return m_num;

}

7. 使用const的一些建议

1 要大胆的使用const,这将给你带来无尽的益处,但前提是你必须搞清楚原委;
2 要避免最一般的赋值操作错误,如将const变量赋值,具体可见思考题;
3 在参数中使用const应该使用引用或指针,而不是一般的对象实例,原因同上;
4 const在成员函数中的三种用法(参数、返回值、函数)要很好的使用;
5 不要轻易的将函数的返回值类型定为const;
6除了重载操作符外一般不要将返回值类型定为对某个对象的const引用;

[思考题答案]
1 这种方法不正确,因为声明指针的目的是为了对其指向的内容进行改变,而声明的指针e指向的是一个常量,所以不正确;
2 这种方法正确,因为声明指针所指向的内容可变;
3 这种做法不正确;
在const A::operator=(const A& a)中,参数列表中的const的用法正确,而当这样连续赋值的时侯,问题就出现了:
A a,b,c:
(a=B)=c;
因为a.operator=(B)的返回值是对a的const引用,不能再将c赋值给const常量。

评论

此博客中的热门博文

【转】AMBA、AHB、APB总线简介

AMBA 简介 随着深亚微米工艺技术日益成熟,集成电路芯片的规模越来越大。数字IC从基于时序驱动的设计方法,发展到基于IP复用的设计方法,并在SOC设计中得到了广泛应用。在基于IP复用的SoC设计中,片上总线设计是最关键的问题。为此,业界出现了很多片上总线标准。其中,由ARM公司推出的AMBA片上总线受到了广大IP开发商和SoC系统集成者的青睐,已成为一种流行的工业标准片上结构。AMBA规范主要包括了AHB(Advanced High performance Bus)系统总线和APB(Advanced Peripheral Bus)外围总线。   AMBA 片上总线        AMBA 2.0 规范包括四个部分:AHB、ASB、APB和Test Methodology。AHB的相互连接采用了传统的带有主模块和从模块的共享总线,接口与互连功能分离,这对芯片上模块之间的互连具有重要意义。AMBA已不仅是一种总线,更是一种带有接口模块的互连体系。下面将简要介绍比较重要的AHB和APB总线。 基于 AMBA 的片上系统        一个典型的基于AMBA总线的系统框图如图3所示。        大多数挂在总线上的模块(包括处理器)只是单一属性的功能模块:主模块或者从模块。主模块是向从模块发出读写操作的模块,如CPU,DSP等;从模块是接受命令并做出反应的模块,如片上的RAM,AHB/APB 桥等。另外,还有一些模块同时具有两种属性,例如直接存储器存取(DMA)在被编程时是从模块,但在系统读传输数据时必须是主模块。如果总线上存在多个主模块,就需要仲裁器来决定如何控制各种主模块对总线的访问。虽然仲裁规范是AMBA总线规范中的一部分,但具体使用的算法由RTL设计工程师决定,其中两个最常用的算法是固定优先级算法和循环制算法。AHB总线上最多可以有16个主模块和任意多个从模块,如果主模块数目大于16,则需再加一层结构(具体参阅ARM公司推出的Multi-layer AHB规范)。APB 桥既是APB总线上唯一的主模块,也是AHB系统总线上的从模块。其主要功能是锁存来自AHB系统总线的地址、数据和控制信号,并提供二级译码以产生APB外围设备的选择信号,从而实现AHB协议到APB协议的转换。 ====================================

【转】GPIO编程模拟I2C入门

ARM编程:ARM普通GPIO口线模拟I2C  请教个问题: 因为需要很多EEPROM进行点对点控制,所以我现在要用ARM的GPIO模拟I2C,管脚方向我设 置的是向外的。我用网上的RW24C08的万能程序修改了一下,先进行两根线的模拟,SDA6, SCL6,但是读出来的数不对。我做了一个简单的实验,模拟SDA6,SCL6输出方波,在示波 器上看到正确方波,也就是说,我的输出控制是没问题的。 哪位大哥能指点一下,是否在接收时管脚方向要设为向内?(不过IOPIN不管什么方向都可 以读出当前状态值的阿) 附修改的RW24C08()程序: #define  SomeNOP() delay(300); /**/ /* *********************************  RW24C08   **************************************** */ /**/ /* ----------------------------------------------------------------------------- ---  调用方式:void I2CInit(void)   函数说明:私有函数,I2C专用 ------------------------------------------------------------------------------- -- */ void  I2CInit( void ) ... {  IO0CLR  =  SCL6;      // 初始状态关闭总线  SomeNOP();  // 延时   I2CStop();  // 确保初始化,此时数据线是高电平 }   /**/ /* ---------------------------------------------------------------------------- ----  调用方式:void I2CStart(void)   函数说明:私有函数,I2C专用 ------------------------------------------------------------------------------- -- */ void  I2CStart( void )

【转】cs8900网卡的移植至基于linux2.6内核的s3c2410平台

cs8900网卡的移植至基于linux2.6内核的s3c2410平台(转) 2008-03-11 20:58 硬件环境:SBC-2410X开发板(CPU:S3C2410X) 内核版本:2.6.11.1 运行环境:Debian2.6.8 交叉编译环境:gcc-3.3.4-glibc-2.3.3 第一部分 网卡CS8900A驱动程序的移植 一、从网上将Linux内核源代码下载到本机上,并将其解压: #tar jxf linux-2.6.11.1.tar.bz2 二、打开内核顶层目录中的Makefile文件,这个文件中需要修改的内容包括以下两个方面。 (1)指定目标平台。 移植前:         ARCH?= $(SUBARCH) 移植后: ARCH            :=arm (2)指定交叉编译器。 移植前: CROSS_COMPILE ?= 移植后: CROSS_COMPILE   :=/opt/crosstool/arm-s3c2410-linux-gnu/gcc-3.3.4-glibc-2.3.3/bin/arm-s3c2410-linux-gnu- 注:这里假设编译器就放在本机的那个目录下。 三、添加驱动程序源代码,这涉及到以下几个方面。(1)、从网上下载了cs8900.c和cs8900.h两个针对2.6.7的内核的驱动程序源代码,将其放在drivers/net/arm/目录下面。 #cp cs8900.c ./drivers/net/arm/ #cp cs8900.h ./drivers/net/arm/ 并在cs8900_probe()函数中,memset (&priv,0,sizeof (cs8900_t));函数之后添加如下两条语句: __raw_writel(0x2211d110,S3C2410_BWSCON); __raw_writel(0x1f7c,S3C2410_BANKCON3); 注:其原因在"第二部分"解释。 (2)、修改drivers/net/arm/目录下的Kconfig文件,在最后添加如下内容: Config ARM_CS8900    tristate "CS8900 support" depends on NET_ETHERNET && A