跳至主要内容

【转】深入理解sizeof

[本文中int占4字节,short占2字节]

1.0 回答下列问题:[答案在文章末尾]

1. sizeof(char) =                           

2. sizeof 'a'   =                           

3. sizeof "a"   =                        

4. strlen("a")) =

  如果你答对了全部四道题,那么你可以不用细看下面关于sizeof的论述。如果你答错了部分题目,那么就跟着我来一起探讨关于sizeof的用法了。  

  对于前面的题目,我想一般有一定C基础的同志应该不会答错1和4题。至于第2题,我想应该要清楚sizeof是求字符串所占的内存。"a"在内存中的表现为a\0,别忘了末尾的\0也占一个字节呢。至于第2题,可能有些人会惊讶了。C 语言中,字符常数是int 型, 因此 sizeof('a') 是 sizeof(int), 这是另一个与 C++ 不同的地方。既然字符常数是int 型,那么int就可以存放4个字符,我们可以得到sizeof 'abcd'为 4。  

1.1 回答以下题目[答案在文章末尾]

short (*ptr[100])[200];

1. sizeof(ptr)           =

2. sizeof(ptr[0])        =

3. sizeof(*ptr[0])       =

4. sizeof((*ptr[0])[0])) =   

  是不是又开始晕了。这里我们定义了一个100个指针数组,每个指针均指向有200个元素的数组,其内存占用为200*sizeof(short)字节。那么这100个数组指针的大小sizeof(ptr)为100*sizeof(short*)。接着,指针数组的第一个指针ptr[0]指向第一个数组,所以这个指针ptr[0]的大小实际上就是一个普通指针的大小,即sizeof(short*)。*ptr[0]指向第一个数组的起始地址,所以sizeof(*ptr[0])实际上求的是第一个组的内存大小200*sizeof(short)。(*ptr[0])[0])是第一个数组的第一个元素,因为是short型,所以这个元素的大小sizeof((*ptr[0])[0]))等价于sizeof(short)。

1.2 回答以下题目[答案在文章末尾]

#include <stdio.h>

#pragma pack(push)

#pragma pack(2)

typedef struct _fruit
{
  char          apple;
  int           banana;
  short         orange;  
  double        watermelon;
  unsigned int  plum:5;
  unsigned int  peach:28;
  char*         tomato;
  struct fruit* next;    
} fruit;

#pragma pack(4)
 
typedef struct _fruit2
{
  char           apple;
  int            banana;  
  short          orange;
  double         watermelon;
  unsigned int   plum:5;
  unsigned int   peach:28;  
  char*          tomato;
  struct fruit2* next;    
} fruit2; 

#pragma pack(pop)

int main(int argc, char *argv[])
{
  printf("fruit=%d,fruit2=%d\n",sizeof(fruit),sizeof(fruit2));
}

问题:打印结果为什么呢?

如果你回答错误,那么你对数据结构的对齐还没有吃透。这里#pragma pack(2)强制设置编译器对齐属性为2,所以第一个数据结构以2对齐,sizeof(fruit)=(sizeof(apple)+1)+sizeof(banana)+sizeof(orange)+sizeof(watermelon)+((plum:5bit+peach:28bit+15bit)/8bit)+sizeof(tomato)+sizeof(next)(注意式子中1 和 15bit 表示补齐内存,使其以2对齐,),既sizeof(fruit)=(sizeof(char)+1)+sizeof(int)+sizeof(short)+sizeof(double)+sizeof(char*)+sizeof(struct fruit*)。第一个数据结构声明完了之后,又使用#pragma pack(4)强制设置编译器对齐属性为4,所以同理,可以得到sizeof(fruit2)=(sizeof(char)+3)+sizeof(int)+(sizeof(short)+2)+sizeof(double)+((5bit+28bit+31bit)/8bit)+sizeof(char*)+sizeof(struct fruit2*)。

注:#pragma pack(push)保存默认对齐,#pragma pack(pop)恢复默认对齐。

----------------------------------------答案:

1.0: 1,4,2,1

1.1: 400,4,400,2

1.2: fruit=30,fruit2=36

评论

此博客中的热门博文

【转】AMBA、AHB、APB总线简介

AMBA 简介 随着深亚微米工艺技术日益成熟,集成电路芯片的规模越来越大。数字IC从基于时序驱动的设计方法,发展到基于IP复用的设计方法,并在SOC设计中得到了广泛应用。在基于IP复用的SoC设计中,片上总线设计是最关键的问题。为此,业界出现了很多片上总线标准。其中,由ARM公司推出的AMBA片上总线受到了广大IP开发商和SoC系统集成者的青睐,已成为一种流行的工业标准片上结构。AMBA规范主要包括了AHB(Advanced High performance Bus)系统总线和APB(Advanced Peripheral Bus)外围总线。   AMBA 片上总线        AMBA 2.0 规范包括四个部分:AHB、ASB、APB和Test Methodology。AHB的相互连接采用了传统的带有主模块和从模块的共享总线,接口与互连功能分离,这对芯片上模块之间的互连具有重要意义。AMBA已不仅是一种总线,更是一种带有接口模块的互连体系。下面将简要介绍比较重要的AHB和APB总线。 基于 AMBA 的片上系统        一个典型的基于AMBA总线的系统框图如图3所示。        大多数挂在总线上的模块(包括处理器)只是单一属性的功能模块:主模块或者从模块。主模块是向从模块发出读写操作的模块,如CPU,DSP等;从模块是接受命令并做出反应的模块,如片上的RAM,AHB/APB 桥等。另外,还有一些模块同时具有两种属性,例如直接存储器存取(DMA)在被编程时是从模块,但在系统读传输数据时必须是主模块。如果总线上存在多个主模块,就需要仲裁器来决定如何控制各种主模块对总线的访问。虽然仲裁规范是AMBA总线规范中的一部分,但具体使用的算法由RTL设计工程师决定,其中两个最常用的算法是固定优先级算法和循环制算法。AHB总线上最多可以有16个主模块和任意多个从模块,如果主模块数目大于16,则需再加一层结构(具体参阅ARM公司推出的Multi-layer AHB规范)。APB 桥既是APB总线上唯一的主模块,也是AHB系统总线上的从模块。其主要功能是锁存来自AHB系统总...

【转】GPIO编程模拟I2C入门

ARM编程:ARM普通GPIO口线模拟I2C  请教个问题: 因为需要很多EEPROM进行点对点控制,所以我现在要用ARM的GPIO模拟I2C,管脚方向我设 置的是向外的。我用网上的RW24C08的万能程序修改了一下,先进行两根线的模拟,SDA6, SCL6,但是读出来的数不对。我做了一个简单的实验,模拟SDA6,SCL6输出方波,在示波 器上看到正确方波,也就是说,我的输出控制是没问题的。 哪位大哥能指点一下,是否在接收时管脚方向要设为向内?(不过IOPIN不管什么方向都可 以读出当前状态值的阿) 附修改的RW24C08()程序: #define  SomeNOP() delay(300); /**/ /* *********************************  RW24C08   **************************************** */ /**/ /* ----------------------------------------------------------------------------- ---  调用方式:void I2CInit(void)   函数说明:私有函数,I2C专用 ------------------------------------------------------------------------------- -- */ void  I2CInit( void ) ... {  IO0CLR  =  SCL6;      // 初始状态关闭总线  SomeNOP();  // 延时   I2CStop();  // 确保初始化,此时数据线是高电平 }   /**/ /* ---------------------------------------------------------------------------- ----  调用方式:void I2CSta...

【转】cs8900网卡的移植至基于linux2.6内核的s3c2410平台

cs8900网卡的移植至基于linux2.6内核的s3c2410平台(转) 2008-03-11 20:58 硬件环境:SBC-2410X开发板(CPU:S3C2410X) 内核版本:2.6.11.1 运行环境:Debian2.6.8 交叉编译环境:gcc-3.3.4-glibc-2.3.3 第一部分 网卡CS8900A驱动程序的移植 一、从网上将Linux内核源代码下载到本机上,并将其解压: #tar jxf linux-2.6.11.1.tar.bz2 二、打开内核顶层目录中的Makefile文件,这个文件中需要修改的内容包括以下两个方面。 (1)指定目标平台。 移植前:         ARCH?= $(SUBARCH) 移植后: ARCH            :=arm (2)指定交叉编译器。 移植前: CROSS_COMPILE ?= 移植后: CROSS_COMPILE   :=/opt/crosstool/arm-s3c2410-linux-gnu/gcc-3.3.4-glibc-2.3.3/bin/arm-s3c2410-linux-gnu- 注:这里假设编译器就放在本机的那个目录下。 三、添加驱动程序源代码,这涉及到以下几个方面。(1)、从网上下载了cs8900.c和cs8900.h两个针对2.6.7的内核的驱动程序源代码,将其放在drivers/net/arm/目录下面。 #cp cs8900.c ./drivers/net/arm/ #cp cs8900.h ./drivers/net/arm/ 并在cs8900_probe()函数中,memset (&priv,0,sizeof (cs8900_t));函数之后添加如下两条语句: __raw_writel(0x2211d110,S3C2410_BWSCON); __raw_writel(0x1f7c,S3C2410_BANKCON3); 注:其原因在"第二部分"解释。 (2)、修改drivers/net/arm/目录下的Kconfig文件,在最后添加如...