跳至主要内容

【转】在Bootloader中实现嵌入式系统自动升级

嵌入式系统由硬件和软件两部分组成,软件部分主要包括Bootloader、内核和文件系统。Bootloader是硬件系统加电所运行的第l段软件代码,但在嵌入式系统中一般没有像PC中的BIOS那样的固件,因此整个系统的加载过程全部是由Bootloader来完成的。系统在上电l或复位时通常都从地址Ox00000000处开始执行,而在这个地址处安排的通常就是系统的Bootloader。Bootloader的主要任务包括:初始化最基本的硬件;将Bootloader本身拷贝到RAM中运行;将内核拷贝到RAM中并调用内核等。

  通常在嵌入式系统中,首先通过JTAG接口将Bootloader烧写到目标板的Flash中,然后在Bootloader中,将内核映像文件和文件系统映像文件通过串口和网络下载并烧写到Flash中。若需对内核或文件系统升级,则按照上述方法重新烧写新的映像文件,直接覆盖原来的映像文件。

  上述方法中,一方面必须将目标板和主机通过串口线和网线相连接,另一方面通过串口或网络下载映像文件,速度很慢。本实验通过扩充Bootloader功能,实现了通过CF存储卡对内核或文件系统映像文件的自动升级,对需要经常为内核或文件系统升级的嵌入式系统来说,克服了传统升级方法的局限,简化了升级方法,提高了升级速度。

  1 基本原理

  本实验对传统Bootloader的功能进行了扩充,加入了升级系统的功能。例如,用户需要对目标板上的内核或文件系统进行升级,只需要将新的映像文件命名为指定的名称并拷贝到CF存储卡中。然后,CF存储卡插入目标板的CF存储卡插槽,重新启动目标板即可完成升级过程。重启时,系统首先运行Bootloader,Bootloader将检测CF存储卡中是否有内核或文件系统的映像文件。若有,则读取映像文件并烧写到目标板的F1ash中,实现升级;若无,则直接启动目标板中的系统,如图1所示。

系统升级流程

  实验使用的开发板基于Intel XScale处理器PXA255。PXA255具有16位的CF存储卡控制器,用于连接CF存储卡。开发板上有32 MB的Flash和64 MB的SDRAM,且Flash的起始地址映射到Ox00000000,SDRAM的起始地址映射到OxA0000000。

  实验板上的InteI Strata Flash,容量为32 MB,分为Bootloader、reserved、kernel和root filesystem四个区。其中,Bootloader分区用于烧写Bootloader,其起始地址为Ox00000000,当系统加电启动或复位时,CPU便跳转到这个位置开始执行指令;reserved分区为保留分区,主要用于传递内核启动参数以及其他系统设置;kernel分区和root filesystem分区分别用于烧写内核和文件系统。各分区的起始地址及大小如图2所示。

各分区的起始地址及大小

  2 实现

  本文所讨论的实现方法,主要是扩充Bootloader的功能,增加对CF存储卡的支持,使系统启动时,Bootloader能对CF存储卡进行文件读取。首先,要将CF存储卡格式化成特定的文件系统格式(本实验主要支持FAT32、FATl6和EXT2三种文件系统)。然后,将待升级的映像文件(内核映像文件、文件系统映像文件或Bootloader本身的映像文件)通过主机拷贝到CF存储卡。因此,Bootloader可以榆测到需要升级的映像文件并对目标板上的相应部分进行更新。

  2.1 Bootloader框架及工作流程

  本实验所编写的Bootloader仅实现了最基本的硬件初始化功能、系统引导功能和系统升级功能,静态编译的二进制文件大小为38 KB。Bootloader用汇编语言和C语言实现,汇编语言仅作了屏蔽所有中断、初始化相关GPIO(General Purpose IO)、初始化SDRAM、拷贝Bootloader和内核到SDRAM等简单工作,便跳转到C程序,在C程序中实现了后续的初始化工作及系统升级。详细流程如图3所示。

详细流程

 2.2 对CF存储卡的支持及数据读取过程

  由于是从CF存储卡上读取新的映像文件并实现系统更新,故在Bootloader中必须首先支持CF卡。CF卡本身提供了两个探测引脚(即Card Detect Pins),用于判断CF卡是否存在。这两个引脚成为CDl和CD2,在CF卡内部被硬件设计为直接与地相连。当CF卡插入时,CDl和CD2应全为低电平,因此,在Bootloader中通过检测CDl和CD2的电平高低,可以判断CF卡是否存在。

  CF卡主要由3部分组成:控制器、存储器阵列和缓冲区。其中,内置的智能存储器可以使外围电路设计大大简化,且完全符合内存卡的PCMCIA(PersonalComputer Memory Card Intemational Association)和AIA (AdvanccdTechnology Attachment)接口规范。因此,对CF卡的访问有基于PCMCIA规范的Memory Map模式、I/O方式以及基于ATA规范的True IDE方式。这里所实现的Bootloader中,CF卡工作在Truc IDE模式下,将CF卡的0E(Output Enable)引脚设置为低电平(反之,若为高电平,则CF卡将工作在PCMCIA规范的Memory Map模式或I/O模式下)。

  对CF卡的True IDE工作模式设置完成后,通过向CF卡的寄存器写入必要的信息实现对CF卡的控制及读写。CF卡主要包含以下寄存器:

  • 数据寄存器(R/W),用于对扇区的读/写操作,主机通过该寄存器向CF卡控制器写入或从CF卡控制寄存器读出扇区缓冲区的数据;
  • 错误寄存器(R),控制寄存器在诊断方式或操作方式下的错误原因;
  • 扇区数寄存器(R/W)。记录读、写命令的扇区数目;
  • 扇区号寄存器(R/W),记录读、写和校验命令指定的起始扇区号;
  • 柱面号寄存器(R/W),记录读、写、校验和寻址命令指定的柱面号;
  • 驱动器/寄存器(R/W),记录读、写、校验和寻道命令指定的驱动器号、磁头号和寻址方式;
  • 状态寄存器(R),反映CF卡驱动器执行命令后的状态,读浚寄存器要清除中断请求信号;
  • 命令寄存器(W),命令寄存器接收主机发送的CF卡工作的控制命令。

  从CF卡读取数据的过程如图4所示。

从CF卡读取数据的过程

  2.3 文件系统支持

  要对CF卡进行文件存取,必须将CF卡格式化成某种文件系统。本实验所编写的Bootloader主要支持3种文件系统:

FATl6、FAT32和EXT2。当需要对嵌入式系统的内核映像(映像文件名为zlmage)或根文件系统映像(映像文件名为tootfs.img)进行升级时,将待更新的映像文件按照指定的文件名拷贝到CF存储卡中。系统启动时,Bootloader首先检测CF存储卡的文件系统类型,然后按照相应的文件系统格式查询CF卡中的所有文件。若发现待更新的映像文件,则调用CF卡底层操作(详见2.2节),将映像文件读出到SDRAM中,再从SDRAM烧写到嵌入式开发板的Flash中,实现升级。有关文件系统的实现细节,详见参考文献。

  3 结论

  通过CF存储卡对嵌入式系统的自动升级,一方面可以简化升级过程,无需通过串口或网络将目标板与主机相连,将文件下载升级,而只需插入CF卡,启动系统便可以完成升级过程;另一方面,升级速度也大大提高,因为系统对CF卡的存取速度远远高于串口或网络。但是,要通过CF卡实现系统升级,嵌入式板必须具有CF卡接口,因此,它并不适合所有的嵌入式系统。

评论

此博客中的热门博文

【转】AMBA、AHB、APB总线简介

AMBA 简介 随着深亚微米工艺技术日益成熟,集成电路芯片的规模越来越大。数字IC从基于时序驱动的设计方法,发展到基于IP复用的设计方法,并在SOC设计中得到了广泛应用。在基于IP复用的SoC设计中,片上总线设计是最关键的问题。为此,业界出现了很多片上总线标准。其中,由ARM公司推出的AMBA片上总线受到了广大IP开发商和SoC系统集成者的青睐,已成为一种流行的工业标准片上结构。AMBA规范主要包括了AHB(Advanced High performance Bus)系统总线和APB(Advanced Peripheral Bus)外围总线。   AMBA 片上总线        AMBA 2.0 规范包括四个部分:AHB、ASB、APB和Test Methodology。AHB的相互连接采用了传统的带有主模块和从模块的共享总线,接口与互连功能分离,这对芯片上模块之间的互连具有重要意义。AMBA已不仅是一种总线,更是一种带有接口模块的互连体系。下面将简要介绍比较重要的AHB和APB总线。 基于 AMBA 的片上系统        一个典型的基于AMBA总线的系统框图如图3所示。        大多数挂在总线上的模块(包括处理器)只是单一属性的功能模块:主模块或者从模块。主模块是向从模块发出读写操作的模块,如CPU,DSP等;从模块是接受命令并做出反应的模块,如片上的RAM,AHB/APB 桥等。另外,还有一些模块同时具有两种属性,例如直接存储器存取(DMA)在被编程时是从模块,但在系统读传输数据时必须是主模块。如果总线上存在多个主模块,就需要仲裁器来决定如何控制各种主模块对总线的访问。虽然仲裁规范是AMBA总线规范中的一部分,但具体使用的算法由RTL设计工程师决定,其中两个最常用的算法是固定优先级算法和循环制算法。AHB总线上最多可以有16个主模块和任意多个从模块,如果主模块数目大于16,则需再加一层结构(具体参阅ARM公司推出的Multi-layer AHB规范)。APB 桥既是APB总线上唯一的主模块,也是AHB系统总线上的从模块。其主要功能是锁存来自AHB系统总...

【转】GPIO编程模拟I2C入门

ARM编程:ARM普通GPIO口线模拟I2C  请教个问题: 因为需要很多EEPROM进行点对点控制,所以我现在要用ARM的GPIO模拟I2C,管脚方向我设 置的是向外的。我用网上的RW24C08的万能程序修改了一下,先进行两根线的模拟,SDA6, SCL6,但是读出来的数不对。我做了一个简单的实验,模拟SDA6,SCL6输出方波,在示波 器上看到正确方波,也就是说,我的输出控制是没问题的。 哪位大哥能指点一下,是否在接收时管脚方向要设为向内?(不过IOPIN不管什么方向都可 以读出当前状态值的阿) 附修改的RW24C08()程序: #define  SomeNOP() delay(300); /**/ /* *********************************  RW24C08   **************************************** */ /**/ /* ----------------------------------------------------------------------------- ---  调用方式:void I2CInit(void)   函数说明:私有函数,I2C专用 ------------------------------------------------------------------------------- -- */ void  I2CInit( void ) ... {  IO0CLR  =  SCL6;      // 初始状态关闭总线  SomeNOP();  // 延时   I2CStop();  // 确保初始化,此时数据线是高电平 }   /**/ /* ---------------------------------------------------------------------------- ----  调用方式:void I2CSta...

【转】cs8900网卡的移植至基于linux2.6内核的s3c2410平台

cs8900网卡的移植至基于linux2.6内核的s3c2410平台(转) 2008-03-11 20:58 硬件环境:SBC-2410X开发板(CPU:S3C2410X) 内核版本:2.6.11.1 运行环境:Debian2.6.8 交叉编译环境:gcc-3.3.4-glibc-2.3.3 第一部分 网卡CS8900A驱动程序的移植 一、从网上将Linux内核源代码下载到本机上,并将其解压: #tar jxf linux-2.6.11.1.tar.bz2 二、打开内核顶层目录中的Makefile文件,这个文件中需要修改的内容包括以下两个方面。 (1)指定目标平台。 移植前:         ARCH?= $(SUBARCH) 移植后: ARCH            :=arm (2)指定交叉编译器。 移植前: CROSS_COMPILE ?= 移植后: CROSS_COMPILE   :=/opt/crosstool/arm-s3c2410-linux-gnu/gcc-3.3.4-glibc-2.3.3/bin/arm-s3c2410-linux-gnu- 注:这里假设编译器就放在本机的那个目录下。 三、添加驱动程序源代码,这涉及到以下几个方面。(1)、从网上下载了cs8900.c和cs8900.h两个针对2.6.7的内核的驱动程序源代码,将其放在drivers/net/arm/目录下面。 #cp cs8900.c ./drivers/net/arm/ #cp cs8900.h ./drivers/net/arm/ 并在cs8900_probe()函数中,memset (&priv,0,sizeof (cs8900_t));函数之后添加如下两条语句: __raw_writel(0x2211d110,S3C2410_BWSCON); __raw_writel(0x1f7c,S3C2410_BANKCON3); 注:其原因在"第二部分"解释。 (2)、修改drivers/net/arm/目录下的Kconfig文件,在最后添加如...