跳至主要内容

【转】Select函数实现原理分析

select需要驱动程序的支持,驱动程序实现fops内的poll函数。select通过每个设备文件对应的poll函数提供的信息判断当前是否有资源可用(如可读或写),如果有的话则返回可用资源的文件描述符个数,没有的话则睡眠,等待有资源变为可用时再被唤醒继续执行。

 

下面我们分两个过程来分析select:

 

1. select的睡眠过程

 

支持阻塞操作的设备驱动通常会实现一组自身的等待队列如读/写等待队列用于支持上层(用户层)所需的BLOCK或NONBLOCK操作。当应用程序通过设备驱动访问该设备时(默认为BLOCK操作),若该设备当前没有数据可读或写,则将该用户进程插入到该设备驱动对应的读/写等待队列让其睡眠一段时间,等到有数据可读/写时再将该进程唤醒。

 

select就是巧妙的利用等待队列机制让用户进程适当在没有资源可读/写时睡眠,有资源可读/写时唤醒。下面我们看看select睡眠的详细过程。

 

select会循环遍历它所监测的fd_set内的所有文件描述符对应的驱动程序的poll函数。驱动程序提供的poll函数首先会将调用select的用户进程插入到该设备驱动对应资源的等待队列(如读/写等待队列),然后返回一个bitmask告诉select当前资源哪些可用。当select循环遍历完所有fd_set内指定的文件描述符对应的poll函数后,如果没有一个资源可用(即没有一个文件可供操作),则select让该进程睡眠,一直等到有资源可用为止,进程被唤醒(或者timeout)继续往下执行。

 

下面分析一下代码是如何实现的。

select的调用path如下:sys_select -> core_sys_select -> do_select

其中最重要的函数是do_select, 最主要的工作是在这里, 前面两个函数主要做一些准备工作。do_select定义如下:

int do_select(int n, fd_set_bits *fds, s64 *timeout)

{

         struct poll_wqueues table;

         poll_table *wait;

         int retval, i;

 

         rcu_read_lock();

         retval = max_select_fd(n, fds);

         rcu_read_unlock();

 

         if (retval < 0)

                   return retval;

         n = retval;

 

         poll_initwait(&table);

         wait = &table.pt;

         if (!*timeout)

                   wait = NULL;

         retval = 0;        //retval用于保存已经准备好的描述符数,初始为0

         for (;;) {

                   unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp;

                   long __timeout;

 

                   set_current_state(TASK_INTERRUPTIBLE);    //将当前进程状态改为TASK_INTERRUPTIBLE

 

                   inp = fds->in; outp = fds->out; exp = fds->ex;

                   rinp = fds->res_in; routp = fds->res_out; rexp = fds->res_ex;

 

                   for (i = 0; i < n; ++rinp, ++routp, ++rexp) { //遍历每个描述符

                            unsigned long in, out, ex, all_bits, bit = 1, mask, j;

                            unsigned long res_in = 0, res_out = 0, res_ex = 0;

                            const struct file_operations *f_op = NULL;

                            struct file *file = NULL;

 

                            in = *inp++; out = *outp++; ex = *exp++;

                            all_bits = in | out | ex;

                            if (all_bits == 0) {

                                     i += __NFDBITS;       // //如果这个字没有待查找的描述符, 跳过这个长字(32位)

                                     continue;

                            }

 

                            for (j = 0; j < __NFDBITS; ++j, ++i, bit <<= 1) {     //遍历每个长字里的每个位

                                     int fput_needed;

                                     if (i >= n)

                                               break;

                                     if (!(bit & all_bits))

                                               continue;

                                     file = fget_light(i, &fput_needed);

                                     if (file) {

                                               f_op = file->f_op;

                                               MARK(fs_select, "%d %lld",

                                                                 i, (long long)*timeout);

                                               mask = DEFAULT_POLLMASK;

                                               if (f_op && f_op->poll)

/* 在这里循环调用所监测的fd_set内的所有文件描述符对应的驱动程序的poll函数 */

                                                        mask = (*f_op->poll)(file, retval ? NULL : wait);

                                               fput_light(file, fput_needed);

                                               if ((mask & POLLIN_SET) && (in & bit)) {

                                                        res_in |= bit; //如果是这个描述符可读, 将这个位置位

                                                        retval++;  //返回描述符个数加1

                                               }

                                               if ((mask & POLLOUT_SET) && (out & bit)) {

                                                        res_out |= bit;

                                                        retval++;

                                               }

                                               if ((mask & POLLEX_SET) && (ex & bit)) {

                                                        res_ex |= bit;

                                                        retval++;

                                               }

                                     }

                                     cond_resched();

                            }

//返回结果

                            if (res_in)

                                     *rinp = res_in;

                            if (res_out)

                                     *routp = res_out;

                            if (res_ex)

                                     *rexp = res_ex;

                   }

                   wait = NULL;

/* 到这里遍历结束。retval保存了检测到的可操作的文件描述符的个数。如果有文件可操作,则跳出for(;;)循环,直接返回。若没有文件可操作且timeout时间未到同时没有收到signal,则执行schedule_timeout睡眠。睡眠时间长短由__timeout决定,一直等到该进程被唤醒。

那该进程是如何被唤醒的?被谁唤醒的呢?

我们看下面的select唤醒过程*/

                   if (retval || !*timeout || signal_pending(current))

                            break;

                  if(table.error) {

                            retval = table.error;

                            break;

                   }

 

                   if (*timeout < 0) {

                            /* Wait indefinitely */

                            __timeout = MAX_SCHEDULE_TIMEOUT;

                   } else if (unlikely(*timeout >= (s64)MAX_SCHEDULE_TIMEOUT - 1)) {

                            /* Wait for longer than MAX_SCHEDULE_TIMEOUT. Do it in a loop */

                            __timeout = MAX_SCHEDULE_TIMEOUT - 1;

                            *timeout -= __timeout;

                   } else {

                            __timeout = *timeout;

                            *timeout = 0;

                   }

                   __timeout = schedule_timeout(__timeout);

                   if (*timeout >= 0)

                            *timeout += __timeout;

         }

         __set_current_state(TASK_RUNNING);

 

         poll_freewait(&table);

 

         return retval;

}

 

2.  select的唤醒过程

前面介绍了select会循环遍历它所监测的fd_set内的所有文件描述符对应的驱动程序的poll函数。驱动程序提供的poll函数首先会将调用select的用户进程插入到该设备驱动对应资源的等待队列(如读/写等待队列),然后返回一个bitmask告诉select当前资源哪些可用。

一个典型的驱动程序poll函数实现如下:

(摘自《Linux Device Drivers � ThirdEdition》Page 165)

static unsigned int scull_p_poll(struct file *filp, poll_table *wait)

{

    struct scull_pipe *dev = filp->private_data;

    unsigned int mask = 0;

    /*

     * The buffer is circular; it is considered full

     * if "wp" is right behind "rp" and empty if the

     * two are equal.

     */

    down(&dev->sem);

    poll_wait(filp, &dev->inq,  wait);

    poll_wait(filp, &dev->outq, wait);

    if (dev->rp != dev->wp)

        mask |= POLLIN | POLLRDNORM;    /* readable */

    if (spacefree(dev))

        mask |= POLLOUT | POLLWRNORM;   /* writable */

    up(&dev->sem);

    return mask;

}

将用户进程插入驱动的等待队列是通过poll_wait做的。

Poll_wait定义如下:

static inline void poll_wait(struct file * filp, wait_queue_head_t * wait_address, poll_table *p)

{

         if (p && wait_address)

                   p->qproc(filp, wait_address, p);

}

这里的p->qproc在do_select内poll_initwait(&table)被初始化为__pollwait,如下:

void poll_initwait(struct poll_wqueues *pwq)

{

         init_poll_funcptr(&pwq->pt, __pollwait);

         pwq->error = 0;

         pwq->table = NULL;

         pwq->inline_index = 0;

}

__pollwait定义如下:

/* Add a new entry */

static void __pollwait(struct file *filp, wait_queue_head_t *wait_address,

                                     poll_table *p)

{

         struct poll_table_entry *entry = poll_get_entry(p);

         if (!entry)

                   return;

         get_file(filp);

         entry->filp = filp;

         entry->wait_address = wait_address;

         init_waitqueue_entry(&entry->wait, current);

         add_wait_queue(wait_address,&entry->wait);

}

通过init_waitqueue_entry初始化一个等待队列项,这个等待队列项关联的进程即当前调用select的进程。然后将这个等待队列项插入等待队列wait_address。Wait_address即在驱动poll函数内调用poll_wait(filp, &dev->inq,  wait);时传入的该驱动的&dev->inq或者&dev->outq等待队列。

 

注: 关于等待队列的工作原理可以参考下面这篇文档:

http://blog.chinaunix.net/u2/60011/showart_1334657.html

 

到这里我们明白了select如何当前进程插入所有所监测的fd_set关联的驱动内的等待队列,那进程究竟是何时让出CPU进入睡眠状态的呢?

进入睡眠状态是在do_select内调用schedule_timeout(__timeout)实现的。当select遍历完fd_set内的所有设备文件,发现没有文件可操作时(即retval=0),则调用schedule_timeout(__timeout)进入睡眠状态。

 

唤醒该进程的过程通常是在所监测文件的设备驱动内实现的,驱动程序维护了针对自身资源读写的等待队列。当设备驱动发现自身资源变为可读写并且有进程睡眠在该资源的等待队列上时,就会唤醒这个资源等待队列上的进程。

举个例子,比如内核的8250 uart driver:

Uart是使用的Tty层维护的两个等待队列, 分别对应于读和写: (uart是tty设备的一种)

struct tty_struct {

         ……

         wait_queue_head_t write_wait;

         wait_queue_head_t read_wait;

         ……

}

当uart设备接收到数据,会调用tty_flip_buffer_push(tty);将收到的数据push到tty层的buffer。

然后查看是否有进程睡眠的读等待队列上,如果有则唤醒该等待会列。

过程如下:

serial8250_interrupt -> serial8250_handle_port -> receive_chars -> tty_flip_buffer_push ->

flush_to_ldisc -> disc->receive_buf

在disc->receive_buf函数内:

if (waitqueue_active(&tty->read_wait)) //若有进程阻塞在read_wait上则唤醒

wake_up_interruptible(&tty->read_wait);

 

到这里明白了select进程被唤醒的过程。由于该进程是阻塞在所有监测的文件对应的设备等待队列上的,因此在timeout时间内,只要任意个设备变为可操作,都会立即唤醒该进程,从而继续往下执行。这就实现了select的当有一个文件描述符可操作时就立即唤醒执行的基本原理。

 

Referece:

1.       Linux Device Drivers � ThirdEdition

2.       内核等待队列机制原理分析

http://blog.chinaunix.net/u2/60011/showart_1334657.html

3.       Kernel code : Linux 2.6.18_pro500 - Montavista


本文来自: (www.91linux.com) 详细出处参考:http://www.91linux.com/html/article/kernel/20081027/13698.html

评论

此博客中的热门博文

【转】VxWorks中的地址映射

在运用嵌入式系统VxWorks和MPC860进行通信系统设计开发时,会遇到一个映射地址不能访问的问题。 缺省情况下,VxWorks系统已经进行了如下地址的映射:   memory地址、bcsr(Board Control and Status)地址、PC_BASE_ADRS(PCMCIA)地址、Internal Memory地址、rom(Flach memory)地址等,但是当你的硬件开发中要加上别的外设时,如(falsh、dsp、FPGA等),对这些外设的访问也是通过地址形式进行读写,如果你没有加相应的地址映射,那么是无法访问这些外设的。   和VxWorks缺省地址映射类似,你也可以进行相应的地址映射。   如下是地址映射原理及实现:   1、 地址映射结构 在Tornado\target\h\vmLib.h文件中 typedef struct phys_mem_desc { void *virtualAddr; void *physicalAddr; UINT len; UINT initialStateMask; /* mask parameter to vmStateSet */ UINT initialState; /* state parameter to vmStateSet */ } PHYS_MEM_DESC; virtualAddr:你要映射的虚拟地址 physicalAddr:硬件设计时定义的实际物理地址 len;要进行映射的地址长度 initialStateMask:可以初始化的地址状态: 有如下状态: #define VM_STATE_MASK_VALID 0x03 #define VM_STATE_MASK_WRITABLE 0x0c #define VM_STATE_MASK_CACHEABLE 0x30 #define VM_STATE_MASK_MEM_COHERENCY 0x40 #define VM_STATE_MASK_GUARDED 0x80 不同的CPU芯片类型还有其特殊状态 initialState:实际初始化的地址状态: 有如下状态: #define VM_STATE_VALID 0x01 #define VM_STATE_VALID_NOT 0x00 #define VM_STATE_WRITA

【转】多迷人Gtkmm啊

前边已经说过用glade设计界面然后动态装载,接下来再来看看怎么改变程序的皮肤(主题)     首先从 http://art.gnome.org/themes/gtk2 下载喜欢的主题,从压缩包里提取gtk-2.0文件夹让它和我们下边代码生成的可执行文件放在同一个目录下,这里我下载的的 http://art.gnome.org/download/themes/gtk2/1317/GTK2-CillopMidnite.tar.gz     然后用glade设计界面,命名为main.glade,一会让它和我们下边代码生成的可执行程序放在同一个目录下边     然后开始写代码如下: //main.cc #include <gtkmm.h> #include <libglademm/xml.h> int main(int argc, char *argv[]) {     Gtk::Main kit(argc,argv);         Gtk::Window *pWnd;        gtk_rc_parse("E:\\theme-viewer\\themes\\gtk-2.0\\gtkrc");       Glib::RefPtr<Gnome::Glade::Xml> refXml;     try     {         refXml = Gnome::Glade::Xml::create("main.glade");     }     catch(const Gnome::Glade::XmlError& ex)     {         Gtk::MessageDialog dialog("Load glade file failed!", false,       \                                   Gtk::MESSAGE_ERROR, Gtk::BUTTONS_OK);         dialog.run();               return 1;     }         refXml->get_widget("main", pWnd);     if(pW

【转】https客户端的实现(libcurl)

一、              概念 1.         为什么要使用libcurl 1)        作为http的客户端,可以直接用socket连接服务器,然后对到的数据进行http解析,但要分析协议头,实现代理…这样太麻烦了。 2)        libcurl是一个开源的客户端url传输库,支持FTP,FTPS,TFTP,HTTP,HTTPS,GOPHER,TELNET,DICT,FILE和LDAP,支持Windows,Unix,Linux等平台,简单易用,且库文件占用空间不到200K 2.         get和post方式 客户端在http连接时向服务提交数据的方式分为get和post两种 1)        Get方式将所要传输的数据附在网址后面,然后一起送达服务器,它的优点是效率比较高;缺点是安全性差、数据不超过1024个字符、必须是7位的ASCII编码;查询时经常用此方法。 2)        Post通过Http post处理发送数据,它的优点是安全性较强、支持数据量大、支持字符多;缺点是效率相对低;编辑修改时多使用此方法。 3.         cookie与session 1)        cookie cookie是发送到客户浏览器的文本串句柄,并保存在客户机硬盘上,可以用来在某个Web站点会话之间持久地保持数据。cookie在客户端。 2)        session session是访问者从到达某个特定主页到离开为止的那段时间。每一访问者都会单独获得一个session,实现站点多个用户之间在所有页面中共享信息。session在服务器上。 3)        libcurl中使用cookie 保存cookie, 使之后的链接与此链接使用相同的cookie a)         在关闭链接的时候把cookie写入指定的文件 curl_easy_setopt(curl, CURLOPT_COOKIEJAR, "/tmp/cookie.txt"); b)        取用现在有的cookie,而不重新得到cookie curl_easy_setopt(curl, CURLOPT_COOKIEFILE, "/tmp/cookie.txt"); b)        ht