跳至主要内容

【转】cs8900网卡的移植至基于linux2.6内核的s3c2410平台

cs8900网卡的移植至基于linux2.6内核的s3c2410平台(转)
2008-03-11 20:58
硬件环境:SBC-2410X开发板(CPU:S3C2410X)
内核版本:2.6.11.1
运行环境:Debian2.6.8
交叉编译环境:gcc-3.3.4-glibc-2.3.3
第一部分 网卡CS8900A驱动程序的移植
一、从网上将Linux内核源代码下载到本机上,并将其解压:
#tar jxf linux-2.6.11.1.tar.bz2
二、打开内核顶层目录中的Makefile文件,这个文件中需要修改的内容包括以下两个方面。
(1)指定目标平台。
移植前:
        ARCH?= $(SUBARCH)
移植后:
ARCH            :=arm
(2)指定交叉编译器。
移植前:
CROSS_COMPILE ?=
移植后:
CROSS_COMPILE   :=/opt/crosstool/arm-s3c2410-linux-gnu/gcc-3.3.4-glibc-2.3.3/bin/arm-s3c2410-linux-gnu-
注:这里假设编译器就放在本机的那个目录下。
三、添加驱动程序源代码,这涉及到以下几个方面。(1)、从网上下载了cs8900.c和cs8900.h两个针对2.6.7的内核的驱动程序源代码,将其放在drivers/net/arm/目录下面。
#cp cs8900.c ./drivers/net/arm/
#cp cs8900.h ./drivers/net/arm/
并在cs8900_probe()函数中,memset (&priv,0,sizeof (cs8900_t));函数之后添加如下两条语句:
__raw_writel(0x2211d110,S3C2410_BWSCON);
__raw_writel(0x1f7c,S3C2410_BANKCON3);
注:其原因在"第二部分"解释。
(2)、修改drivers/net/arm/目录下的Kconfig文件,在最后添加如下内容:
Config ARM_CS8900
   tristate "CS8900 support"
depends on NET_ETHERNET && ARM && ARCH_SMDK2410
help
   Support for CS8900A chipset based Ethernet cards. If you have a network (Ethernet) card of this type, say Y and read the Ethernet-HOWTO, available from as well as .
   To compile this driver as a module, choose M here and read
. The module will be
   called cs8900.o.
注:内核系统配置文件由2.4版本的config.in变成了2.6版本Kconfig文件,在这个文件里面添加如上内容,则在运行make menuconfig或者make xconfig命令的时候就会出现:
        [ ]   CS8900 support
这一选项。
(3)、修改drivers/net/arm/目录下的Makefile文件,在最后添加如下内容:
obj-$(CONFIG_ARM_CS8900)    += cs8900.o
注:2.6版本内核的Makefile文件也与2.4版本的有所不同。添加以上语句,就会使内核在编译的时候根据配置将cs8900A的驱动程序以模块或静态的方式编译到内核当中。
(4)、在/arch/arm/mach-s3c2410/mach-smdk2410.c文件中,找到smdk2410_iodesc[]结构数组,添加如下如下内容:{vSMDK2410_ETH_IO, 0x19000000, SZ_1M, MT_DEVICE}
修改之后变成了:
static struct map_desc smdk2410_iodesc[] __initdata = {
       /* nothing here yet */
        /* Map the ethernet controller CS8900A */        {vSMDK2410_ETH_IO, 0x19000000, SZ_1M, MT_DEVICE}
};
注:由于在驱动程序的开发的时候,在驱动程序当中所用到的跟设备有关的地址都是虚拟地址,也就是说驱动程序操作的都是虚拟地址,那么要使驱动程序对设备的 操作反映到设备上去,就得将设备的物理地址映射到正确的虚拟地址上去,从而保证驱动程序对虚拟地址的操作也就是对相应的物理地址操作。以上添加的语句就是 为了将网卡的物理地址(0x19000000)映射到vSMDK2410_ETH_IO所指向的虚拟地址上去,上面的结构还定义了网卡虚拟地址所占用的区 间,也就是从vSMDK2410_ETH_IO开始的SZ_1M大小的去间,并指定了该区间所指向的域(的属性)。(疑问:在本开发板上,网卡占用的是 CPU的nGCS3片选信号,也就是在Bank3,根据处理器的地址空间定义,这个地址应该是0x18000000,为什么这里使用的是 0x19000000?查找到2.4.18的内核当中,也是用0x19000000来进行映射。)
(5)、在include/asm-arm/arch-s3c2410/目录下创建smdk2410.h文件,其内容为:
#ifndef _INCLUDE_SMDK2410_H_
#define _INCLUDE_SMDK2410_H_
#include
#define pSMDK2410_ETH_IO        0x19000000
#define vSMDK2410_ETH_IO   0xE0000000
#define SMDK2410_ETH_IRQ    IRQ_EINT9

评论

此博客中的热门博文

【转】VxWorks中的地址映射

在运用嵌入式系统VxWorks和MPC860进行通信系统设计开发时,会遇到一个映射地址不能访问的问题。 缺省情况下,VxWorks系统已经进行了如下地址的映射:   memory地址、bcsr(Board Control and Status)地址、PC_BASE_ADRS(PCMCIA)地址、Internal Memory地址、rom(Flach memory)地址等,但是当你的硬件开发中要加上别的外设时,如(falsh、dsp、FPGA等),对这些外设的访问也是通过地址形式进行读写,如果你没有加相应的地址映射,那么是无法访问这些外设的。   和VxWorks缺省地址映射类似,你也可以进行相应的地址映射。   如下是地址映射原理及实现:   1、 地址映射结构 在Tornado\target\h\vmLib.h文件中 typedef struct phys_mem_desc { void *virtualAddr; void *physicalAddr; UINT len; UINT initialStateMask; /* mask parameter to vmStateSet */ UINT initialState; /* state parameter to vmStateSet */ } PHYS_MEM_DESC; virtualAddr:你要映射的虚拟地址 physicalAddr:硬件设计时定义的实际物理地址 len;要进行映射的地址长度 initialStateMask:可以初始化的地址状态: 有如下状态: #define VM_STATE_MASK_VALID 0x03 #define VM_STATE_MASK_WRITABLE 0x0c #define VM_STATE_MASK_CACHEABLE 0x30 #define VM_STATE_MASK_MEM_COHERENCY 0x40 #define VM_STATE_MASK_GUARDED 0x80 不同的CPU芯片类型还有其特殊状态 initialState:实际初始化的地址状态: 有如下状态: #define VM_STATE_VALID 0x01 #define VM_STATE_VALID_NOT 0x00 #define VM_STATE_WRITA

【转】多迷人Gtkmm啊

前边已经说过用glade设计界面然后动态装载,接下来再来看看怎么改变程序的皮肤(主题)     首先从 http://art.gnome.org/themes/gtk2 下载喜欢的主题,从压缩包里提取gtk-2.0文件夹让它和我们下边代码生成的可执行文件放在同一个目录下,这里我下载的的 http://art.gnome.org/download/themes/gtk2/1317/GTK2-CillopMidnite.tar.gz     然后用glade设计界面,命名为main.glade,一会让它和我们下边代码生成的可执行程序放在同一个目录下边     然后开始写代码如下: //main.cc #include <gtkmm.h> #include <libglademm/xml.h> int main(int argc, char *argv[]) {     Gtk::Main kit(argc,argv);         Gtk::Window *pWnd;        gtk_rc_parse("E:\\theme-viewer\\themes\\gtk-2.0\\gtkrc");       Glib::RefPtr<Gnome::Glade::Xml> refXml;     try     {         refXml = Gnome::Glade::Xml::create("main.glade");     }     catch(const Gnome::Glade::XmlError& ex)     {         Gtk::MessageDialog dialog("Load glade file failed!", false,       \                                   Gtk::MESSAGE_ERROR, Gtk::BUTTONS_OK);         dialog.run();               return 1;     }         refXml->get_widget("main", pWnd);     if(pW

【转】https客户端的实现(libcurl)

一、              概念 1.         为什么要使用libcurl 1)        作为http的客户端,可以直接用socket连接服务器,然后对到的数据进行http解析,但要分析协议头,实现代理…这样太麻烦了。 2)        libcurl是一个开源的客户端url传输库,支持FTP,FTPS,TFTP,HTTP,HTTPS,GOPHER,TELNET,DICT,FILE和LDAP,支持Windows,Unix,Linux等平台,简单易用,且库文件占用空间不到200K 2.         get和post方式 客户端在http连接时向服务提交数据的方式分为get和post两种 1)        Get方式将所要传输的数据附在网址后面,然后一起送达服务器,它的优点是效率比较高;缺点是安全性差、数据不超过1024个字符、必须是7位的ASCII编码;查询时经常用此方法。 2)        Post通过Http post处理发送数据,它的优点是安全性较强、支持数据量大、支持字符多;缺点是效率相对低;编辑修改时多使用此方法。 3.         cookie与session 1)        cookie cookie是发送到客户浏览器的文本串句柄,并保存在客户机硬盘上,可以用来在某个Web站点会话之间持久地保持数据。cookie在客户端。 2)        session session是访问者从到达某个特定主页到离开为止的那段时间。每一访问者都会单独获得一个session,实现站点多个用户之间在所有页面中共享信息。session在服务器上。 3)        libcurl中使用cookie 保存cookie, 使之后的链接与此链接使用相同的cookie a)         在关闭链接的时候把cookie写入指定的文件 curl_easy_setopt(curl, CURLOPT_COOKIEJAR, "/tmp/cookie.txt"); b)        取用现在有的cookie,而不重新得到cookie curl_easy_setopt(curl, CURLOPT_COOKIEFILE, "/tmp/cookie.txt"); b)        ht