跳至主要内容

【转】GNU binutils工具使用

GNU binutils是一组二进制工具集。包括:addr2line   ar   gprof   nm   objcopy   objdump   ranlib   size   strings   strip. 本文归纳他们的常用法。

ar

    ar用于建立、修改、提取档案文件(archive)。archive是一个包含多个被包含文件的单一文件(也称之为库文件),其结构保证了可以从中检索并得到原始的被包含文件(称之为archive中的member)。member的原始文件内容、模式(权限)、时间戳、所有着和组等属性都被保存在 archive中。member被提取后,他们的属性被恢复到初始状态。
   
    ar主要用于创建C库文件(关于.o目标文件的生成和共享库的详细介绍,参考gcc笔记创建静态库 
    (1) 生成目标文件:  
)

$ gcc -Wall -c file1.c file2.c file3.c
   
   
不用指定生成.o文件名(默认生成file1.o, file2.o, file3.o)。

    (2) 从.o目标文件创建静态连接库:
   
$ ar rv libNAME.a file1.o file2.o file3.o
   
    ar
生成了libNAME.a库,并列出库中的文件。
    r : 将flie1.o, file2,o, file3.o插入archive,如故原先archive中已经存在某文件,则先将该文件删除。
    v : 显示ar操作的附加信息(如被处理的member文件名)

注: 对于BSD系统, 还需要在创建静态库之后创建索引: $ ranlib libNAME.a Linux中不需要这一步(运行它也是无害的).
创建动态库(利用gcc,未用ar)

(1) 生成目标文件
 
$ gcc -Wall -c -fpic file1.c file2.c file3.c

-fpic:
指定生成的.o目标文件可被重定址. pic是position idependent code的缩写: 位置无关代码.

(2)生成动态库文件
$ gcc -shared -o libNAME.so file1.o file2.o file3.o

一般地, 连接器使用main()函数作为程序入口. 但在动态共享库中没有这样的入口. 所以就要指定-shared选项来避免编译器显示出错信息.

实际上, 上述的两条命令可以合并为下面这条:
$ gcc -Wall -shared -fpic -o libNAME.so file1.c file2.c file3.c


此后,将main函数所在的程序与libNAME.so连接(注意库连接路径和头文件包含路径,以及连接顺序!参考gcc笔记
   
至此,与动态库连接的函数编译成了一个可执行文件。貌似成功了,但还差最后一步。如果直接运行该程序,会给出这样的错误信息:
error while loading shared libraries: libhello.so:
cannot open shared object file: No such file or directory

这是因为与动态库连接的程序在运行时,首先将该动态库加载到内存中,而gcc默认加载动态库文件所在目录为/usr/local/lib, /usr/lib。刚才的程序虽然能编译成功,但如果我们自己建立的动态库没有位于默认目录中,则执行时会应为无法找到它而失败。
  
解决办法:改变加载路径对应的环境变量,然后再执行。
   
export LD_LIBRARY_PATH=动态库所在目录:$LD_LIBRARY_PATH

查看archive内容
$ ar tv archiveNAME

t :
显示archive中member的内容,若不指定member,则列出所有。
v : 与t结合使用时,显示member的详细信息。

要想进了解ar的详细选项,参考ar的on-line manual


nm

    nm用来列出目标文件中的符号,可以帮助程序员定位和分析执行程序和目标文件中的符号信息和它的属性。
    如果没有目标文件作为参数传递给nm, nm假定目标文件为a.out.
    这里用一个简单的示例程序来介绍nm的用法:

main.c:
int main(int argc, char *argv[])
{
  hello();
  bye();
  return 0;
}

hello.c:  
void hello(void)
{
  printf("hello!\n");
}

bye.c:
   
void bye(void)
{
  printf("good bye!\n");
}

   
运行下列命令:
    $ gcc -Wall -c main.c hello.c bye.c
    gcc
生成main.o, hello.o, bye.o三个目标文件(这里没有声明函数原型,加了-Wall,gcc会给出警告)
    $ nm main.o hello.o bye.o

结果显示如下:  
main.o:
                 U bye
                 U hello
00000000 T main

hello.o:
00000000 T hello
                 U puts

bye.o:
00000000 T bye
                 U puts

   
结合这些输出结果,以及程序代码,可以知道:
    对于main.o, bye和hello未被定义, main被定义了
    对于hello.o, hello被定义了, puts未被定义
    对于bye.o, bye被定义了,puts未被定义

几个值得注意的问题:
    (1)"目标文件"指.o文件, 库文件, 最终的可执行文件
    .o  : 编译后的目标文件,即含有最终编译出的机器码,但它里面所引用的其他文件中函数的内存位置尚未定义.
    (2)如果用nm查看可执行文件, 输出会比较多, 仔细研究输出, 可以对nm用法有更清醒的认识.
    (3)在上述hello.c, bye.c中, 调用的是printf(), 而nm输出中显示调用的是puts(), 说明最终程序实际调用的puts(), 如果令hello.c或bye.c中的printf()使用格式化输出,则nm显示调用printf(). ( 如: printf("%d", 1); )
   
    关于nm的参数选项,参考on-line manual


objcopy

    objcopy可以将一种格式的目标文件转化为另外一种格式的目标文件. 它使用GNU BFD库进行读/写目标文件.使用BFD, objcopy就能将原格式的目标文件转化为不同格式的目标文件.
    以我们在nm中使用的hello.o目标文件和hello可执行为例:
$ file hello.o hello
  
    file
命令用来判别文件类型, 输出如下:
   
hello.o: ELF 32-bit LSB relocatable, Intel 80386, version 1 (SYSV), not stripped
hello:  ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.2.0, dynamically linked (uses shared libs), not stripped
   

   
现在运行objcopy来改变hello的文件类型: 原先它是ELF格式的可执行程序, 现将它转换为srec格式. srec格式文件是Motolora S-Record格式的文件, 主要用来在主机和目标机之间传输数据.
   
$ objcopy -O srec hello hello_srec
$ file hello.o hello

    file
命令结果: hello_srec: Motorola S-Record; binary data in text format

    注意objcopy的格式, "-O"指定输出文件类型; 输入文件名和输出文件名位于命令末尾. 关于objcopy命令的详细选项, 参考on-line manual


objdump

    objdump用来显示目标文件的信息. 可以通过选项控制显示那些特定信息. objdump一个最大的用处恐怕就是将C代码反汇编了. 在嵌入式软件开发过程中, 也可以用它查看执行文件或库文件的信息.
    下面我们用上文提到的hello可执行文件和hello_srec可执行文件为例, 介绍objdump的简单用法:
   
$ objdump -f hello hello_srec

输出如下:
hello:     file format elf32-i386
architecture: i386, flags 0x00000112:
EXEC_P, HAS_SYMS, D_PAGED
start address 0x080482c0

hello_srec:     file format srec
architecture: UNKNOWN!, flags 0x00000000:
start address 0x00000000080482c0
   

-f :
显示目标文件的头文件概要信息.

生成反汇编代码:
   
$ objdump -d hello.o

显示如下:
hello.o:     file format elf32-i386

Disassembly of section .text:

00000000 <hello>:
   0:   55                      push   %ebp
   1:   89 e5                   mov    %esp,%ebp
   3:   83 ec 08                sub    $0x8,%esp
   6:   83 ec 0c                sub    $0xc,%esp
   9:   68 00 00 00 00          push   $0x0
   e:   e8 fc ff ff ff          call   f <hello+0xf>
  13:   83 c4 10                add    $0x10,%esp
  16:   c9                      leave
  17:   c3                      ret

    -d :
显示目标文件中机器指令使用的汇编语言. 只反汇编那些应该含有指令机器码的节(显示.text段); 如果用-D, 则反汇编所有节的内容.
    关于objcopy命令的详细选项, 参考on-line manual


readelf

    readelf用来显示ELF格式目标文件的信息.可通过参数选项来控制显示哪些特定信息.(注意: readelf不支持显示archive文档, 也不支持64位的ELF文件).
    下面利用先前的hello可执行文件演示readelf的简单用法:
   
$ readelf -h hello

ELF Header:
  Magic:   7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
  Class:                                           ELF32
  Data:                                            2's complement, little endian
  Version:                                        1 (current)
  OS/ABI:                                          UNIX - System V
  ABI Version:                                   0
  Type:                                              EXEC (Executable file)
  Machine:                                        Intel 80386
  Version:                                          0x1
  Entry point address:                       0x80482c0
  Start of program headers:              52 (bytes into file)
  Start of section headers:                 3848 (bytes into file)
  Flags:                                               0x0
  Size of this header:                          52 (bytes)
  Size of program headers:                32 (bytes)
  Number of program headers:          7
  Size of section headers:                  40 (bytes)
  Number of section headers:            34
  Section header string table index:   31

注意: readelf只能用于ELF格式目标文件, 且选项中至少要指定一个(除V, H外)的选项!


gprof

    gprof被用来测量程序的性能. 它记录每个函数被调用的次数以及相应的执行时间. 这样就能锁定程序执行时花费时间最多的部分, 对程序的优化就可集中于对它们的优化.
   
    用一个简单的数值计算程序来掩饰gprof的用法:
collatz.c:
#include <stdio.h>
/* Computes the length of Collatz sequences */
unsigned int step (unsigned int x)
{
     if (x % 2 == 0)
     {
      return (x / 2);
     }
     else
     {
      return (3 * x + 1);
     }
}

unsigned int nseq (unsigned int x0)
{
     unsigned int i = 1, x;
     if (x0 == 1 || x0 == 0)
      return i;
     x = step (x0);
     while (x != 1 && x != 0)
     {
      x = step (x);
      i++;
     }
     return i;
}

int main (void)
{
     unsigned int i, m = 0, im = 0;
     for (i = 1; i < 500000; i++)
     {
      unsigned int k = nseq (i);
      if (k > m)
      {
           m = k;
           im = i;
           printf ("sequence length = %u for %u\n", m, im);
      }
     }
     return 0;
}

   
先将collatz.c编译成目标文件collatz.o, gcc通过 -pg选项来打开gprof支持:
   
$ gcc -Wall -c -pg collatz.c
 
$ gcc -Wall -pg -o collatz collatz.o

   
注意:两条命令都要加 "-pg"选项。前一条命令生成collatz.o目标文件。后一条命令生成可执行文件,该可执行文件中包含了记录函数执行时间的指令。
    生成collatz可执行文件后,现执行它,结果与一般程序的执行无疑。但此时在PWD目录生成一个名为"gmon.out"的文件,gprof通过它来分析程序的执行。
    如果不现执行程序,而直接用gprof来分析它,会提示"gmon.out: No such file or directory"。
    gprof用法:
   
$ gprof ./collatz

关于gprof更多的描述,参考gprof的on-line manual

评论

此博客中的热门博文

【转】AMBA、AHB、APB总线简介

AMBA 简介 随着深亚微米工艺技术日益成熟,集成电路芯片的规模越来越大。数字IC从基于时序驱动的设计方法,发展到基于IP复用的设计方法,并在SOC设计中得到了广泛应用。在基于IP复用的SoC设计中,片上总线设计是最关键的问题。为此,业界出现了很多片上总线标准。其中,由ARM公司推出的AMBA片上总线受到了广大IP开发商和SoC系统集成者的青睐,已成为一种流行的工业标准片上结构。AMBA规范主要包括了AHB(Advanced High performance Bus)系统总线和APB(Advanced Peripheral Bus)外围总线。   AMBA 片上总线        AMBA 2.0 规范包括四个部分:AHB、ASB、APB和Test Methodology。AHB的相互连接采用了传统的带有主模块和从模块的共享总线,接口与互连功能分离,这对芯片上模块之间的互连具有重要意义。AMBA已不仅是一种总线,更是一种带有接口模块的互连体系。下面将简要介绍比较重要的AHB和APB总线。 基于 AMBA 的片上系统        一个典型的基于AMBA总线的系统框图如图3所示。        大多数挂在总线上的模块(包括处理器)只是单一属性的功能模块:主模块或者从模块。主模块是向从模块发出读写操作的模块,如CPU,DSP等;从模块是接受命令并做出反应的模块,如片上的RAM,AHB/APB 桥等。另外,还有一些模块同时具有两种属性,例如直接存储器存取(DMA)在被编程时是从模块,但在系统读传输数据时必须是主模块。如果总线上存在多个主模块,就需要仲裁器来决定如何控制各种主模块对总线的访问。虽然仲裁规范是AMBA总线规范中的一部分,但具体使用的算法由RTL设计工程师决定,其中两个最常用的算法是固定优先级算法和循环制算法。AHB总线上最多可以有16个主模块和任意多个从模块,如果主模块数目大于16,则需再加一层结构(具体参阅ARM公司推出的Multi-layer AHB规范)。APB 桥既是APB总线上唯一的主模块,也是AHB系统总线上的从模块。其主要功能是锁存来自AHB系统总...

【转】C++/CLI程序进程之间的通讯

 现在,把大型软件项目分解为一些相交互的小程序似乎变得越来越普遍,程序各部分之间的通讯可使用某种类型的通讯协议,这些程序可能运行在不同的机器上、不同的操作系统中、以不同的语言编写,但也有可能只在同一台机器上,实际上,这些程序可看成是同一程序中的不同线程。而本文主要讨论C++/CLI程序间的通讯,当然,在此是讨论进程间通讯,而不是网络通讯。    简介   试想一个包含数据库查询功能的应用,通常有一个被称为服务端的程序,等待另一个被称为客户端程序发送请求,当接收到请求时,服务端执行相应功能,并把结果(或者错误信息)返回给客户端。在许多情况中,有着多个客户端,所有的请求都会在同一时间发送到同一服务端,这就要求服务端程序要更加高级、完善。   在某些针对此任务的环境中,服务端程序可能只是众多程序中的一个程序,其他可能也是服务端或者客户端程序,实际上,如果我们的数据库服务端需要访问不存在于本机的文件,那么它就可能成为其他某个文件服务器的一个客户端。一个程序中可能会有一个服务线程及一个或多个客户线程,因此,我们需小心使用客户端及服务端这个术语,虽然它们表达了近似的抽象含义,但在具体实现上却大不相同。从一般的观点来看,客户端即为服务端所提供服务的"消费者",而服务端也能成为其他某些服务的客户端。    服务端套接字   让我们从一个具体有代表性的服务端程序开始(请看例1),此程序等待客户端发送一对整数,把它们相加之后返回结果给客户端。   例1: using namespace System; using namespace System::IO; using namespace System::Net; using namespace System::Net::Sockets; int main(array<String^>^ argv) { if (argv->Length != 1) { Console::WriteLine("Usage: Server port"); Environment::Exit(1); } int port = 0; try { port = Int32::Parse(argv[0]); } catch (FormatException^ e) { Console::Wri...

【转】VxWorks入门

1.VxWorks开发方式:交叉开发,即将开发分为主机(host)和目标机(target)两部分。 类似于dos下C语言程序的开发。 合并开发的优点:简单 缺点:资源消耗量大,CPU支持,非标准体系的支持 host (Tornado) target(vxWork) 小程序模块 vxWorks实际采用开发模式 Tornado提供:编辑,编译,调试,性能分析工具,是vxWorks的开发工具 vxWorks:面向对象可以剪裁的实际运行操作系统 2.vxWorks启动方式 <1>Rom方式 (vxWork_rom) vxWorks直接烧入rom <2>Rom引导方式(bootrom+vxWorks) 其中bootrom烧入rom,vxWorks可以通过从串口,网口,硬盘,flash等下载!这里的bootrom不是开发环境中的bootable,在开发环境里bootable指的是vxWorks,downloadable指application 3.调试 <1>attachs/20060907_164540_564.rar 用来在多任务调试时将调试对象绑定到某个任务 <2>任务级调试(attachs/20060907_164540_564.rar taskName) 单个任务的调试不会影响到其他任务的运行,主要用来调用户的应用程序。 全局断点:在调另一任务或本任务时,系统运行本任务断点,则停下。各任务要配合使用。 任务断点:调本任务时,系统运行到本任务断点,则停下。如果没有attachs/20060907_164540_564.rar到本任务,不起作用。 一次性断点:跑到一次之后自动删除。 <3>系统级调试(attachs/20060907_164540_564.rar system) 把所有task和系统core、中断看成一个整体,可用于调试系统和中断。对中断调试,如果不是系统级调试,无论是那种断点都不起作用 !wdbAgent不在调试范围内,当任务级调试时工作在中断方式,系统级调试工作在轮询方式。 !可是使用命令行方式的调试,参看crossWind教程。 4.调度 优先级调度(无条件) 时间片:同优先级,如果时间片没有打开,任务采取先到先运行,运行完毕在交出cpu,如果打开,则轮流使用cpu。 !死循环使比它...