跳至主要内容

【转】等时传输的数据交易格式

等时传输只需令牌与数据两个封包阶段就可以形成一个数据交易的动作。图1,是一个等时传输的基本数据交易格式。

  图1 等时传输的基本数据交易格式

  用来实现等时数据传输的封包非常类似批量传输,只不过少了用来确认之用的握手封包。在PC主机同意去支持等时数据至TJO设各或从I/O设各输人等时数据之前,主机会协调出一个可保证的排序流程。等时传输是在每一个(微)帧所产生的,而PC会在同意建立这个连接(或管线)之前,将会确定在帧中可使用的带宽有多少。一个具各每一帧最高1 023字节的全速等时传输来说,可以使用到69%的USB带宽。因此,如果有两个全速设备想要建立每一帧传输1 023字节的等时管线,主机就会被第二个管线搞混掉。这是因为第二个数据传输将无法以剩下的带宽来传输。如果此时设各支持了具各在每一帧中较小的数据封包或较少封包的切换设置,那么设各的驱动程序就会加以要求,并切换至另一种配置方式。或者驱动程序在待会再测试一次,希望将有可使用的带宽。而当设备被配置后,等时传输就会被保证有其需要的传输间隔。

  通过图1,可以将等时传输的数据交易划分为下面所列的两种类型,IN与OUT令牌封包,如图2所示。其中,如果主机送出IN令牌封包,设备将会传回数据封包给主机。反之,若主机送出一个OUT令牌封包,将会有一个数据封包紧随在后送出给设备。由于等时传输不支持握手封包,所以数据错误不会再重新传一遍。若需要双方想来传输数据,则需要针对每一个方向配置一个分开的端点与管线。

  图2 时传输的两种基本数据交易格式

  如果主机在高速的总线上与全速设各执行等时传输,主机就会使用前一章所提及的分割数据交易的动作。等时OUT数据交易会使用起始分割数据交易(SS-PLIT),但却没有完成分割数据交易(CSPLIT)。这是因为设备不需要回报给主机任何状态信息。此外,等时传输也不会使用PING特殊封包的通信协议,如图3与4所示。

  图3 典型的等时our数据交易示意图

  图4 典型的等时IN数据交易示意图

  欢迎转载,信息来源维库电子市场网(www.dzsc.com


评论

此博客中的热门博文

【转】AMBA、AHB、APB总线简介

AMBA 简介 随着深亚微米工艺技术日益成熟,集成电路芯片的规模越来越大。数字IC从基于时序驱动的设计方法,发展到基于IP复用的设计方法,并在SOC设计中得到了广泛应用。在基于IP复用的SoC设计中,片上总线设计是最关键的问题。为此,业界出现了很多片上总线标准。其中,由ARM公司推出的AMBA片上总线受到了广大IP开发商和SoC系统集成者的青睐,已成为一种流行的工业标准片上结构。AMBA规范主要包括了AHB(Advanced High performance Bus)系统总线和APB(Advanced Peripheral Bus)外围总线。   AMBA 片上总线        AMBA 2.0 规范包括四个部分:AHB、ASB、APB和Test Methodology。AHB的相互连接采用了传统的带有主模块和从模块的共享总线,接口与互连功能分离,这对芯片上模块之间的互连具有重要意义。AMBA已不仅是一种总线,更是一种带有接口模块的互连体系。下面将简要介绍比较重要的AHB和APB总线。 基于 AMBA 的片上系统        一个典型的基于AMBA总线的系统框图如图3所示。        大多数挂在总线上的模块(包括处理器)只是单一属性的功能模块:主模块或者从模块。主模块是向从模块发出读写操作的模块,如CPU,DSP等;从模块是接受命令并做出反应的模块,如片上的RAM,AHB/APB 桥等。另外,还有一些模块同时具有两种属性,例如直接存储器存取(DMA)在被编程时是从模块,但在系统读传输数据时必须是主模块。如果总线上存在多个主模块,就需要仲裁器来决定如何控制各种主模块对总线的访问。虽然仲裁规范是AMBA总线规范中的一部分,但具体使用的算法由RTL设计工程师决定,其中两个最常用的算法是固定优先级算法和循环制算法。AHB总线上最多可以有16个主模块和任意多个从模块,如果主模块数目大于16,则需再加一层结构(具体参阅ARM公司推出的Multi-layer AHB规范)。APB 桥既是APB总线上唯一的主模块,也是AHB系统总线上的从模块。其主要功能是锁存来自AHB系统总...

【转】select问题

问: 该串口初始化如下 ioctl(comm2Fd,FIOBAUDRATE,9600) ioctl(comm2Fd,FIOSETOPTIONS,OPT_RAW) 使用如下 FD_ZERO   (&readFds); FD_SET   (comm2Fd,   &readFds);   width   =   comm2Fd   +   1; FD_ISSET   (comm2Fd,   &readFds); FOREVER { if(timeoutvalue==0) { printf("\nselect   start!\n"); selectnum   =   select   (width,   &readFds,   NULL,   NULL,   NULL); printf("\nselect   over!\n"); }                                 ........... } 现在的状况是程序跑一段时间后会死机或这个串口通讯任务死掉,每次死机都是"select   start!"打印出来,而"select   over!"打印不出来,在仅这个串口通讯任务死掉的情况下,用comm1Fd超级终端登陆,查询任务状态,会发现tExcTask任务居然处于挂起状态??? 哪位大哥帮忙分析一下或给予一点提示,小弟不胜感激!! 答: sele...

【转】C++/CLI程序进程之间的通讯

 现在,把大型软件项目分解为一些相交互的小程序似乎变得越来越普遍,程序各部分之间的通讯可使用某种类型的通讯协议,这些程序可能运行在不同的机器上、不同的操作系统中、以不同的语言编写,但也有可能只在同一台机器上,实际上,这些程序可看成是同一程序中的不同线程。而本文主要讨论C++/CLI程序间的通讯,当然,在此是讨论进程间通讯,而不是网络通讯。    简介   试想一个包含数据库查询功能的应用,通常有一个被称为服务端的程序,等待另一个被称为客户端程序发送请求,当接收到请求时,服务端执行相应功能,并把结果(或者错误信息)返回给客户端。在许多情况中,有着多个客户端,所有的请求都会在同一时间发送到同一服务端,这就要求服务端程序要更加高级、完善。   在某些针对此任务的环境中,服务端程序可能只是众多程序中的一个程序,其他可能也是服务端或者客户端程序,实际上,如果我们的数据库服务端需要访问不存在于本机的文件,那么它就可能成为其他某个文件服务器的一个客户端。一个程序中可能会有一个服务线程及一个或多个客户线程,因此,我们需小心使用客户端及服务端这个术语,虽然它们表达了近似的抽象含义,但在具体实现上却大不相同。从一般的观点来看,客户端即为服务端所提供服务的"消费者",而服务端也能成为其他某些服务的客户端。    服务端套接字   让我们从一个具体有代表性的服务端程序开始(请看例1),此程序等待客户端发送一对整数,把它们相加之后返回结果给客户端。   例1: using namespace System; using namespace System::IO; using namespace System::Net; using namespace System::Net::Sockets; int main(array<String^>^ argv) { if (argv->Length != 1) { Console::WriteLine("Usage: Server port"); Environment::Exit(1); } int port = 0; try { port = Int32::Parse(argv[0]); } catch (FormatException^ e) { Console::Wri...