跳至主要内容

【转】linux下的调试工具

转载时请注明出处和作者联系方式
文章出处:http://www.limodev.cn/blog
作者联系方式:李先静 <xianjimli at hotmail dot com>

 

随着XP的流行,人们越来越注重软件的前期设计、后期的实现,以及贯穿于其中的测试工作,经过这个过程出来的自然是高质量的软件。甚至有人声称XP 会淘汰调试器!这当然是有一定道理的,然而就目前的现实来看,这还是一种理想。在日常工作中,调试工具还是必不可少的。在Linux下,调试工具并非只有 gdb,还有很多其它调试工具,它们都各有所长,侧重方面也有所不同。本文介绍几种笔者常用的调试工具:

 

1. mtrace

在linux下开发应用程序,用C/C++语言的居多。内存泄露和内存越界等内存错误,无疑是其中最头疼的问题之一。glibc为解决内存错误提供了两种方案:

一种是hook内存管理函数。hook内存管理函数后,你可以通过记下内存分配的历史记录,在程序终止时查看是否有内存泄露,这样就可以找出内存泄露的地方了。你也可以通过在所分配内存的首尾写入特殊的标志,在释放内存时检查该标志是否被破坏了,这样就可以达到检查内存越界问题的目的。

另外一种方法更简单,glibc已经为第一种方案提供了默认的实现,你要做的只是在特定的位置调用mtrace/muntrace两个函数,它们的函数原型如下:

#include

void mtrace(void);

void muntrace(void);

你可能会问,在哪里调这两种函数最好?这没有固定的答案,要视具体情况而定。对于小程序来说,在进入main时调用mtrace,在退出main函数时调用muntrace。对于大型软件,这样做可能会记录过多的信息,分析这些记录会比较慢,这时可以在你所怀疑代码的两端调用。

另外,还需要设置一个环境变量MALLOC_TRACE,它是一个文件名,要保证当前用户有权限创建和写入该文件。glibc的内存管理器会把内存分配的历史信息写入到MALLOC_TRACE指定的文件中。

程序运行完毕后,使用mtrace工具分析这些内存分配历史信息,可以查出内存错误的位置(mtrace在glibc-utils软件包里)。

 

2. strace

在编程时,检查函数的返回值是一种好习惯。对于像glibc等标准C的函数,光检查返回值是不够的,还需要检查errno的值。这样的程序往往显得冗长,不够简洁。同时也可能是出于偷懒的原因,大多数程序里并没有做这样的检查。

这样的程序,一旦出现错误,用调试器一步一步定位错误,然后想法查出错误的原因,也是可以的,不过比较麻烦,对调试器来说有些大材小用,不太可取。这时,用strace命令可能会更方便一点。它可以显示各个系统调用/信号的执行过程和结果。比如文件打开出错,一眼就看出来了,连错误的原因 (errno)都知道。

 

3. binutil

binutil是一系列的工具,你可能根本不知道它们的存在,但是没有它们你却寸步难行。Binutil包括下列工具:

* ld - the GNU linker.
* as - the GNU assembler.
* addr2line - Converts addresses into filenames and line numbers.
* ar - A utility for creating, modifying and extracting from archives.
* c++filt - Filter to demangle encoded C++ symbols.
* gprof - Displays profiling information.
* nlmconv - Converts object code into an NLM.
* nm - Lists symbols from object files.
* objcopy - Copys and translates object files.
* objdump - Displays information from object files.
* ranlib - Generates an index to the contents of an archive.
* readelf - Displays information from any ELF format object file.
* size - Lists the section sizes of an object or archive file.
* strings - Lists printable strings from files.
* strip - Discards symbols.
* windres - A compiler for Windows resource files.

其中部分工具对调试极有帮助,如:

你可以用objdump反汇编,查看目标文件或可执行文件内部信息。

你可以用addr2line把机器地址转换到代码对应的位置。

你可以用nm查看目标文件或可执行文件中的各种符号。

你可以用gprof分析各个函数的使用情况,找出性能的瓶颈所在(这需要加编译选项)。

 

4. ld-linux

现在加载ELF可执行文件的工作,已经落到ld-linux.so.2头上了。你可能会问,这与有调试程序有关系吗?有的。比如,在linux中,共享库里所有非static的函数/全局变量都是export的,更糟的是C语言中没有名字空间这个概念,导致函数名极易冲突。在多个共享库中,名字冲突引起的BUG是比较难查的。这时,你可以通过设置LD_ DEBUG环境变量,来观察ld-linux.so加载可执行文件的过程,从中可以得到不少帮助信息。LD_ DEBUG的取值如下:

* libs display library search paths
* reloc display relocation processing
* files display progress for input file
* symbols display symbol table processing
* bindings display information about symbol binding
* versions display version dependencies
* all all previous options combined
* statistics display relocation statistics
* unused determined unused DSOs
* help display this help message and exit

 

5. gdb

对于真正意义的调试器来说,gdb在linux下是独一无二的。它有多种包装,有字符界面的,也有图形界面的,有单独运行的,也有集成到IDE中的。gdb功能强大,图形界面的gdb容易上手一点,但功能无疑受到了一些限制,相信大部分高手还是愿意使用字符界面的。Gdb太常用了,这里不再多说。

 

6. gcc/boundschecker

相信很多人用过win32下的BoundsChecker(Compuware公司)和Purify(IBM公司)两个工具吧。它们的功能实在太强大了,绝非能通过重载内存管理函数就可以做到,它们在编译时插入了自己的调试代码。

gcc也有个扩展,通过在编译时插入调试代码,来实现更强大的检查功能。当然这要求重新编译gcc,你可以到http: //sourceforge.net/projects/boundschecking/ 下载gcc的补丁。它的可移植性非常好,笔者曾一个ARM 平台项目里使用过,效果不错。

 

7. valgrind

最好的东西往往最后才见到。Valgrind是我的最爱,用习惯了,写的程序不在valgrind下跑一遍,就像没有写单元测试程序一样,有点放心不下。它有BoundsChecker/Purify的功能,而且速度更快。

有点遗憾的是valgrind目前只支持x86平台,当然,这对大多数情况已经足够了。

你可以到http://valgrind.org/ 下载最新版本。

评论

此博客中的热门博文

【转】VxWorks中的地址映射

在运用嵌入式系统VxWorks和MPC860进行通信系统设计开发时,会遇到一个映射地址不能访问的问题。 缺省情况下,VxWorks系统已经进行了如下地址的映射:   memory地址、bcsr(Board Control and Status)地址、PC_BASE_ADRS(PCMCIA)地址、Internal Memory地址、rom(Flach memory)地址等,但是当你的硬件开发中要加上别的外设时,如(falsh、dsp、FPGA等),对这些外设的访问也是通过地址形式进行读写,如果你没有加相应的地址映射,那么是无法访问这些外设的。   和VxWorks缺省地址映射类似,你也可以进行相应的地址映射。   如下是地址映射原理及实现:   1、 地址映射结构 在Tornado\target\h\vmLib.h文件中 typedef struct phys_mem_desc { void *virtualAddr; void *physicalAddr; UINT len; UINT initialStateMask; /* mask parameter to vmStateSet */ UINT initialState; /* state parameter to vmStateSet */ } PHYS_MEM_DESC; virtualAddr:你要映射的虚拟地址 physicalAddr:硬件设计时定义的实际物理地址 len;要进行映射的地址长度 initialStateMask:可以初始化的地址状态: 有如下状态: #define VM_STATE_MASK_VALID 0x03 #define VM_STATE_MASK_WRITABLE 0x0c #define VM_STATE_MASK_CACHEABLE 0x30 #define VM_STATE_MASK_MEM_COHERENCY 0x40 #define VM_STATE_MASK_GUARDED 0x80 不同的CPU芯片类型还有其特殊状态 initialState:实际初始化的地址状态: 有如下状态: #define VM_STATE_VALID 0x01 #define VM_STATE_VALID_NOT 0x00 #define VM_STATE_WRITA

【转】cs8900网卡的移植至基于linux2.6内核的s3c2410平台

cs8900网卡的移植至基于linux2.6内核的s3c2410平台(转) 2008-03-11 20:58 硬件环境:SBC-2410X开发板(CPU:S3C2410X) 内核版本:2.6.11.1 运行环境:Debian2.6.8 交叉编译环境:gcc-3.3.4-glibc-2.3.3 第一部分 网卡CS8900A驱动程序的移植 一、从网上将Linux内核源代码下载到本机上,并将其解压: #tar jxf linux-2.6.11.1.tar.bz2 二、打开内核顶层目录中的Makefile文件,这个文件中需要修改的内容包括以下两个方面。 (1)指定目标平台。 移植前:         ARCH?= $(SUBARCH) 移植后: ARCH            :=arm (2)指定交叉编译器。 移植前: CROSS_COMPILE ?= 移植后: CROSS_COMPILE   :=/opt/crosstool/arm-s3c2410-linux-gnu/gcc-3.3.4-glibc-2.3.3/bin/arm-s3c2410-linux-gnu- 注:这里假设编译器就放在本机的那个目录下。 三、添加驱动程序源代码,这涉及到以下几个方面。(1)、从网上下载了cs8900.c和cs8900.h两个针对2.6.7的内核的驱动程序源代码,将其放在drivers/net/arm/目录下面。 #cp cs8900.c ./drivers/net/arm/ #cp cs8900.h ./drivers/net/arm/ 并在cs8900_probe()函数中,memset (&priv,0,sizeof (cs8900_t));函数之后添加如下两条语句: __raw_writel(0x2211d110,S3C2410_BWSCON); __raw_writel(0x1f7c,S3C2410_BANKCON3); 注:其原因在"第二部分"解释。 (2)、修改drivers/net/arm/目录下的Kconfig文件,在最后添加如下内容: Config ARM_CS8900    tristate "CS8900 support" depends on NET_ETHERNET && A

【转】多迷人Gtkmm啊

前边已经说过用glade设计界面然后动态装载,接下来再来看看怎么改变程序的皮肤(主题)     首先从 http://art.gnome.org/themes/gtk2 下载喜欢的主题,从压缩包里提取gtk-2.0文件夹让它和我们下边代码生成的可执行文件放在同一个目录下,这里我下载的的 http://art.gnome.org/download/themes/gtk2/1317/GTK2-CillopMidnite.tar.gz     然后用glade设计界面,命名为main.glade,一会让它和我们下边代码生成的可执行程序放在同一个目录下边     然后开始写代码如下: //main.cc #include <gtkmm.h> #include <libglademm/xml.h> int main(int argc, char *argv[]) {     Gtk::Main kit(argc,argv);         Gtk::Window *pWnd;        gtk_rc_parse("E:\\theme-viewer\\themes\\gtk-2.0\\gtkrc");       Glib::RefPtr<Gnome::Glade::Xml> refXml;     try     {         refXml = Gnome::Glade::Xml::create("main.glade");     }     catch(const Gnome::Glade::XmlError& ex)     {         Gtk::MessageDialog dialog("Load glade file failed!", false,       \                                   Gtk::MESSAGE_ERROR, Gtk::BUTTONS_OK);         dialog.run();               return 1;     }         refXml->get_widget("main", pWnd);     if(pW